
Distributed Decision Trees

Ozan İrsoy1[0000−0002−7123−8361] and Ethem Alpaydın2[0000−0001−7506−0321]

1 Department of Computer Science, Cornell University,
Ithaca, NY 14853

oirsoy@cs.cornell.edu
2 Department of Computer Science, Özyeğin University,

Çekmeköy 34794, Istanbul, Turkey
ethem.alpaydin@ozyegin.edu.tr

Abstract. In a budding tree, every node is part internal node and part
leaf. This allows representing the tree in a continuous parameter space
and training it with backpropagation, like a neural network. Unlike a
traditional tree whose construction is composed of two distinct stages of
growing and pruning, “bud” nodes grow into subtrees or are pruned back
dynamically during learning. In this work, we extend the budding tree
and propose the distributed tree where the children use different and
independent splits; hence, multiple paths in a tree can be traversed at
the same time. In a traditional tree, the learned representations are local,
that is, activation makes a soft selection among all the root-to-leaf paths
in a tree, but the ability to combine multiple paths of the distributed
tree gives it the power of a distributed representation, as in a traditional
perceptron layer. Our experimental results show that distributed trees
perform comparably or better than budding and traditional hard trees.

Keywords: Decision trees · Hierarchical mixture of experts · Local vs
distributed representations

1 Introduction

The decision tree is one of the most widely used models for supervised learning.
Consisting of internal decision nodes and terminal leaf nodes, it implements a hi-
erarchical decision function [3, 13, 14]. The decision nodes act as input-dependent
gates and the response is read from the leaves.

Different decision tree architectures differ in the way the decision nodes are
defined and/or how the tree is constructed. The basic decision tree is hard in
the sense that a decision node chooses one of the branches. It is also univariate,
that is, only one input attribute is used in making a decision.

In this work3, we are going to discuss a number of extensions of the basic
hard univariate tree; in Section 2, we will discuss the multivariate tree, the soft
3 This submission is a revised version of our original report arXiv:1412.6388 from

2014, which has not been published in any conference/journal since then. Given the
current need for interpretable/explainable alternatives to neural networks, we have
decided to pick up this line of research again. O. İrsoy is now with Bloomberg L.P.

Ethem Alpaydın
Structural, Syntactic, and Statistical Pattern Recognition
Joint IAPR International Workshops, S+SSPR 2022, Montreal, QC, Canada, August 26–27, 2022,
LNCS, 13813, Springer, pp 152-162.



2 O. İrsoy and E. Alpaydın

tree, and the budding tree. In Section 3, we will propose a new type of tree,
namely the distributed budding tree. We give experimental results in Section 4
and conclude in Section 6.

2 Different Tree Architectures

2.1 Hard Decision Trees

Given input x = [1, x1, . . . , xd], the response at node m is defined recursively:

ym(x) =


ρm if m is a leaf
yml(x) else if gm(x) > 0

ymr(x) else if gm(x) ≤ 0

(1)

If m is an internal node, the decision is forwarded to the left or right subtree
depending on the outcome of the gating gm(x) (In this work, we assume that
all input attributes are numeric and we build binary trees.) If m is a leaf node,
for regression ρm ∈ R returns the scalar response value; for binary classification
ρm ∈ [0, 1] returns the probability of belonging to the positive class, and for
tasks requiring multidimensional outputs (e.g. multiclass classification, vector
regression), ρm is a vector.

In a univariate tree, the gating uses a single input dimension:

gm(x) = xj(m) − cm (2)

where j(m) denotes the attribute index (1 . . . d) used in node m and cm is the
corresponding threshold value against which the value of that attribute is com-
pared. We choose one of the two branches depending on the sign of the difference.
Decision tree induction algorithms, e.g., C4.5 [13], allow us find the best attribute
and threshold at each node using the subset of the training data reaching that
node (i.e., satisfying all the conditions on the nodes above m).

The multivariate tree [12, 16] is a generalization where all input attributes
are used in gating. In a linear multivariate tree, we have

gm(x) = wTx (3)

A univariate decision defines a split boundary that is orthogonal to one of
the axes but the linear multivariate node allows arbitrary oblique splits. If we
relax the linearity assumption on gm(·), we get the multivariate nonlinear tree;
for example, in [4], gm(·) is defined as a multilayer perceptron. In an omnivariate
tree, a node can be univariate, linear, or nonlinear multivariate [15].

Regardless of the gating and the leaf response functions, inducing the optimal
decision tree is a difficult problem [14]. Finding the smallest decision tree that
perfectly classifies a given set of input is NP-hard [5]. Thus typically, decision
trees are constructed greedily.

Essentially, decision tree induction consists of two steps:



Distributed Decision Trees 3

1. Growing the tree: Starting from the root node, at each node m, we search
for the best decision function gm(x) that splits the data that reaches the
node m. If the split provides an improvement in terms of a measure (e.g.
entropy), we keep the split, and recursively repeat the process for the two
children ml and mr. If the split does not provide any improvement, then m
is kept as a leaf and ρm is assigned accordingly.

2. Pruning the tree: Once the tree is grown, we can check if reducing the tree
complexity by replacing subtrees with leaf nodes leads to an improvement
on a separate development set. This is done to avoid overfitting and improve
generalization of the tree.

2.2 Soft Decision Trees

The hierarchical mixture of experts [10] define a soft decision tree where the
gating nodes are linear multivariate and the splitting is soft; that is, instead of
choosing one of the two children, both are chosen with different probabilities.
This allows the overall output of the tree to be continuous and we can use
backpropagation to update all of the tree parameters, in the gating nodes and
the leaves.

More formally, a soft decision tree models the response as the following re-
cursive definition:

ym(x) =

{
ρm if m is a leaf
gm(x)yml(x) + (1− gm(x))ymr(x) otherwise

(4)

where gm(x) = σ(wT
mx) where σ(·) is the sigmoid (logistic) function.

Soft decision trees are grown incrementally in a similar fashion to hard trees
[8]. Every node is recursively split until a stopping criterion is reached, and
we use gradient-descent to learn the splitting hyperplane of the parent and the
response values of its two children.

In a previous study, we have shown how convolutional preprocessing can be
added to soft decision trees thereby achieving an architecture that can compete
with deep multilayer network [1].

2.3 Budding Trees

Budding trees [9] generalize soft trees further by softening the notion of being a
leaf as well. Every node (called a bud node) is part internal node and part leaf.
For a node m, the degree of how much of m is a leaf is defined by the leafness
parameter γm ∈ [0, 1]. This allows the response function to be continuous with
respect to the parameters, including the structure of a tree.

The response of bud node m is recursively defined:

ym(x) = (1− γm)
[
gm(x)yml(x) + (1− gm(x))ymr(x)

]
+ γmρm (5)

The recursion ends when a node with γm = 1 is encountered. (In a traditional
decision tree, γm is binary; it is 0 for an internal node and 1 for a leaf.)



4 O. İrsoy and E. Alpaydın

The augmented error that we minimize is

E′ = E + λ
∑
m

(1− γm) subject to γm ∈ [0, 1],∀m (6)

where E is the original regression/classification error calculated using the out-
put of the tree on a labelled training set, and the second term is a regulariza-
tion/penalty term forcing nodes to be leaves.

Note that while backpropagating, not only we update all the decision node
weights and the leaf values, but we also update γm, that is, we are also updating
the structure of the tree. Initially, a node starts with its γm = 1 and if it is
updated to be less, we physically split the node and grow a subtree with its
gating function and children (with their own γ starting from 1). Similarly, a
previously grown subtree that turned out be useless can be pruned back because
of the regularization term.

Another difference is that any training instance updates all the parameters
of all the tree and so the growth of any subtree affects the rest of the tree.

3 Distributed Budding Trees

Even though the soft tree (and also the budding tree) provide a means for hi-
erarchical representation learning, the resulting representations are local. The
overall response is a convex combination of all the leaves. This provides a soft
selection among the leaves that is akin to a hierarchical softmax, and limits
the representational power—If we use hard thresholds instead of soft sigmoidal
thresholds, it essentially selects one of the leaves (paths). Thus, it partitions the
input space into as many regions as the number of leaves in the tree, which
results in a representation power that is linear in the number of nodes.

To overcome this limit, we extend the budding tree to construct a distributed
tree where the two children of a node are selected by different and independent
gating functions. Observe that the source of locality in a budding tree comes
from the convexity among leaves and selecting one child more means selecting
the other child less. We relax this constraint in the distributed budding tree by
untying the gating function that controls the paths for the two subtrees:

ym(x) = (1− γm)
[
gml(x)yml(x) + gmr(x)ymr(x)

]
+ γmρm (7)

where gml(x) = σ(wT
mlx) and gmr(x) = σ(wT

mrx) are the conditions for the
left and right children and wml, wmr respectively are the untied linear split
parameters of the node m for the left and right splits. Hence the conditions for
left and right subtrees are independent—we get the budding (and soft) tree if
gmr(x) ≡ 1− gml(x).

With this definition, a tree no longer generates local representations, but
distributed ones. The selection of one child is independent of the selection of
the other, and for an input, multiple paths can be traversed (see Figure 1).
Intuitively, a distributed tree becomes similar to a hierarchical sigmoid layer as



Distributed Decision Trees 5

(a) (b)

Fig. 1. (a) Operation of a budding tree which (softly) selects a single path across the
tree. (b) Operation of a distributed tree where it can (softly) select multiple paths.

opposed to a hierarchical softmax. In the case of hard thresholds, more than
one leaf node (path) can be selected for an instance, implying any one of 2L

possibilities where L is the number of leaves (as opposed to exactly one of L for
the traditional tree). This results in a representation power exponential in the
number of nodes.

The distributed budding tree still retains the hierarchy that exists in tradi-
tional hard/soft decision trees and budding trees. Essentially, each node m can
still veto its entire downward subtree by not being activated. The activation of
a node m means that there is at least one leaf in the subtree that is relevant to
this particular input.

Previously we have also applied the same idea of continuous construction
by softly adding/removing complexity to multilayer perceptrons and we have
proposed two methods; in tunnel networks, it is done at the level of hidden units
and in budding perceptrons, it works at the level of hidden layers [7].

4 Experiments

In this section, we report quantitative experimental results for regression, binary,
and multiclass classification tasks.

We use ten regression (ABAlone, ADD10, BOSton, CALifornia, COMp, CON-
crete, puma8FH, puma8FM, puma8NH, puma8NM ), ten binary (BREast, GER-
man, MAGic, MUSk2, PIMa, POLyadenylation, RINgnorm, SATellite47, SPAm-
base, TWOnorm) and ten multiclass (BALance, CMC, DERmatology, ECOli,
GLAss, OPTdigits, PAGeblock, PENdigits, SEGment, YEAst) data sets from
the UCI repository [2], as in [9]. We compare distributed trees with budding
trees and the C4.5 for regression and classification tasks. Linear discriminant
tree (LDT) which is a hard, multivariate tree [16] is used as an additional base-
line for the classification tasks.

We adopt the following experimental methodology: We first separate one
third of the data set as the test set over which we evaluate the final perfor-
mance. With the remaining two thirds, we apply 5 × 2-fold cross validation.
Hard trees (including the linear discriminant tree) use the validation set as a
pruning set. Distributed and budding trees use the validation set to tune the



6 O. İrsoy and E. Alpaydın

Table 1. Regression results.

MSE Size
C4.5 Bud Dist C4.5 Bud Dist

ABA 54.13 41.61 41.79 44 35 24
ADD 24.42 4.68 4.56 327 35 27
BOS 34.21 21.85 18.28 19 19 33
CAL 31.18 24.01 23.26 300 94 47
COM 3.61 1.98 1.97 110 19 29
CON 26.89 15.62 15.04 101 38 43
8FH 41.69 37.83 37.89 47 13 21
8FM 6.89 5.07 5.02 164 17 15
8NH 39.46 34.25 34.53 77 27 43
8NM 6.69 3.67 3.61 272 37 37

learning rate and λ. Statistical significance is tested with the paired t-test for
the performance measures, and the Wilcoxon Rank Sum test for the tree sizes,
both with significance level α = 0.05. The values reported are results on the
test set not used for training or validation (model selection). Significantly best
results are shown in boldface in the figures.

Table 1 shows the mean squared errors and the number of nodes of the C4.5,
budding tree, and distributed tree on the regression data sets. we see that the
distributed trees perform significantly better on five data sets (add10, boston,
california, concrete, puma8fm), whereas the budding tree performs better on
one (puma8nh), the remainder four being ties. In terms of tree sizes, both the
distributed tree and the budding tree have three wins (abalone, add10, california
and comp, puma8fh, puma8nh, respectively), the remaining four are ties. Note
that at the end of the training, because of the stochasticity of training, both
distributed trees and budding trees have nodes that are almost leaf (having
γ ≈ 1). These nodes can be pruned to get smaller trees with negligible change
in the overall response function.

Table 2 shows the percentage accuracy of C4.5, LDT, budding and distributed
trees on binary classification data sets. In terms of accuracy, LDT has four
wins (german, pima, polyadenylation, twonorm), distributed tree has five wins
(magick, musk2, ringnorm, satellite, spambase) and the remaining one (breast) is
a tie. On its four win, LDT produces very small trees (and on three, it produces
the smallest trees). This suggests that with proper regularization, it is possible
to improve the performance of budding and distributed trees. In terms of tree
sizes, LDT has six wins (breast, polyadenylation, ringnorm, satellite, spambase,
twonorm) and C4.5 has one (german) with the remaining three ties.

Table 3 shows the percentage accuracy of C4.5, LDT, budding and distributed
trees on multiclass classification data sets. The distributed tree is significantly
better on five data sets (balance, dermatology, optdigits, pendigits, segment), and
the remaining five are ties. In terms of tree sizes, again LDT produces smaller
trees with four wins (balance, cmc, glass, optdigits), and budding tree has one
win (pendigits).



Distributed Decision Trees 7

Table 2. Binary classification results

Accuracy Size
C4.5 LDT Bud Dist C4.5 LDT Bud Dist

BRE 93.29 95.09 95.00 95.51 7 4 12 23
GER 70.06 74.16 68.02 70.33 1 3 42 39
MAG 82.52 83.08 86.39 86.64 53 38 122 40
MUS 94.54 93.59 97.02 98.24 62 11 15 35
PIM 72.14 76.89 67.20 72.26 8 5 68 35
POL 69.47 77.45 72.57 75.33 34 3 61 97
RIN 87.78 77.25 88.51 95.06 93 3 61 117
SAT 84.58 83.30 86.87 87.91 25 9 38 41
SPA 90.09 89.86 91.47 93.29 36 13 49 23
TWO 82.96 98.00 96.74 97.64 163 3 29 25

Table 3. Multiclass classification results

Accuracy Size
C4.5 LDT Bud Dist C4.5 LDT Bud Dist

BAL 61.91 88.47 92.44 96.36 6 3 29 28
CMC 50.00 46.65 53.23 52.87 25 3 28 51
DER 94.00 93.92 93.60 95.84 16 11 11 20
ECO 77.48 81.39 83.57 83.83 10 11 24 58
GLA 56.62 53.38 53.78 55.41 21 9 21 55
OPT 84.85 93.73 94.58 97.13 121 31 40 92
PAG 96.72 94.66 96.52 96.63 24 29 37 27
PEN 92.96 96.60 98.14 98.98 170 66 54 124
SEG 94.48 91.96 95.64 96.97 42 33 33 76
YEA 54.62 56.67 59.32 59.20 25 22 41 42

5 Visualization

In this section, we visualize trees learned on a synthetic and real data.
Synthetic data is designed as a one-dimensional regression dataset where the

response is a sinusoidal of the input with a small additive noise, and the input
is limited to the interval [−3, 3]. 300 samples are drawn for both training and
validation sets. Trees are displayed in Figure 2.

We observe that both type of trees use smoothly sloped sigmoid gating func-
tions to interpolate between to endpoints to incrementally build up the sinusoidal
shape. Since distributed trees have two (untied) gates, its decision nodes are able
to (softly) split the space into not two but three regions. Therefore for some nodes
we observe curves transitioning between three pieces, creating shapes with more
than one break point, while using flat children.

In addition to synthetic data we use the MNIST handwritten digit database
[11] to visualize trees as shown in Figure 3. Each node is visualized by the
average value of all instances that fall into that node. In a hard tree, this is
trivial to define, however in soft, budding and distributed trees every instance
falls into every possible node with some nonzero value, however small. Therefore



8 O. İrsoy and E. Alpaydın

Fig. 2. Budding (top) and distributed (bottom) trees trained on toy data. Red curves
display response by the subtree at that node. Blue curves display the gating function
at that node. For distributed trees, blue and purple curves display (untied) left and
right gating functions.

we compute a notion of a soft membership which is the multiplication of all
gating values through the particular path, and use that to compute a weighted
average instead. Additionally, distributed decision trees have a notion of not
taking either of the path to children, finishing the computation at the given node
as if it was a leaf. For each internal node, we measure this by multiplying the
soft membership so far with (1−gml)(1−gmr), and display the resulting average
right below each plot. Nodes also carry a transparency measured by the non-
leafness of all the ancestors in the path (1− γm) multiplied, since the more each
ancestor tends to becoming a leaf the less impact the node has in the overall
output.

For both trees we see interesting hierarchies: For instance, budding tree splits
apart digit 4 from similar looking input, and then into two, digits of 7 and 9.
Distributed tree has several variations of digit 3 spreading apart into branches
from the same ancestor. Additionally, we see that distributed tree occasionally
early stops at an internal node by shutting off both children, for instance digit
4 is recognized this way at the first level, below the root.

6 Conclusions

After reviewing soft and budding trees, we propose a distributed tree model
that overcomes the locality of traditional trees and can learn distributed repre-
sentations of the data. It does this by allowing multiple root-to-leaf path (soft)
selections over a tree structure, as opposed to selection of a single path as done
by budding (soft) and traditional (hard) trees. This increases their representa-
tional power from linear to exponential in the number of leaves. Quantitative



Distributed Decision Trees 9

Fig. 3. Budding (left) and distributed (right) trees trained on MNIST, displayed ver-
tically (root is at the left, growing towards the right). Each node displays the average
input falling into that node (path), weighted by the soft memberships assigned by suc-
cessive compositions of gating. Distributed trees show an additional image that belongs
to neither left or right subtree, measured by how closed both gates are.



10 O. İrsoy and E. Alpaydın

evaluation on several data sets shows that this increase is indeed helpful in terms
of predictive performance.

Previously we have proposed using decision-tree autoencoders [6] and we
believe that distributed trees too can be considered as alternative to layers of
perceptrons for deep learning in that they can learn hierarchical distributed
representations of the input in its different levels.

Even though the selection of left and right subtrees is independent in a dis-
tributed tree, it still preserves the hierarchy in its tree structure as in traditional
decision trees and budding trees. This is because an activation close to zero for
a node has the ability to veto its entire subtree, and an active node means that
it believes that there is some relevant node down in that particular subtree. Vi-
sualizing the decisions and paths learned by soft and budding trees help towards
the interpretation of the trained models.

References

1. Ahmetoğlu, A., İrsoy, O., Alpaydın, E.: Convolutional soft decision trees. In:
Kurkova, V. (ed.) ICANN 2018, LNCS 11139, pp. 134–141. Springer (2018)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth & Brooks, Pacific Grove, California (1984)

4. Guo, H., Gelfand, S.B.: Classification trees with neural network feature extraction.
IEEE Transactions on Neural Networks 3, 923–933 (1992)

5. Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower bounds on learning decision lists
and trees. Information and Computation 126(2), 114–122 (1996)

6. İrsoy, O., Alpaydın, E.: Autoencoder trees. In: Asian Conference on Machine Learn-
ing (2015)

7. İrsoy, O., Alpaydın, E.: Continuously constructive deep neural networks. IEEE
Transactions on Neural Networks and Learning Systems 31(4), 1124–1133 (2020)

8. İrsoy, O., Yıldız, O.T., Alpaydın, E.: Soft decision trees. In: International Confer-
ence on Pattern Recognition (2012)

9. İrsoy, O., Yıldız, O.T., Alpaydın, E.: Budding trees. In: International Conference
on Pattern Recognition (2014)

10. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
Neural computation 6(2), 181–214 (1994)

11. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (1998)
12. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision

trees. Journal of Artificial Intelligence Research 2, 1–32 (1994)
13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA (1993)
14. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers-a survey.

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 35(4), 476–487 (2005)

15. Yıldız, O.T., Alpaydın, E.: Omnivariate decision trees. IEEE Transactions on Neu-
ral Networks 12(6), 1539–1546 (2001)

16. Yıldız, O.T., Alpaydın, E.: Linear discriminant trees. International Journal of Pat-
tern Recognition and Artificial Intelligence 19(03), 323–353 (2005)


