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a b s t r a c t

In this study, we establish the non-existence and existence results for the localized solitary
waves of the two-dimensional long-wave–short-wave interaction equations. Both the
non-existence and existence results are based on Pohozaev-type identities. We prove the
existence of solitary waves by showing that the solitary waves are the minimizers of an
associated variational problem.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this study we mainly establish the non-existence results and the existence results for the localized solitary waves of
the two-dimensional long-wave–short-wave interaction (LSI) equations:

iφt + φxx = φux, (1)

utx + γ uyy = −(|φ|2)x, (2)

where γ ∈ R, φ(x, y, t) is a complex-valued function, u(x, y, t) is real, (x, y) ∈ R2, t ≥ 0 and subscripts refer to partial
derivatives. The LSI equations describe the interaction between high-frequency and low-frequency waves near the long-
wave–short-wave resonance where the group velocity of short-waves is equal to the phase velocity of long-waves. The
constant γ measures transverse effects in the y-direction for waves propagating essentially in the x-direction. The LSI
equations arise in various contexts such as water waves [1, p. 214], geometric optics [2] and elastic waves [3]. The well-
posedness of the Cauchy problem associated with the LSI equations has been established in [2].
Existence of solitary waves which are localized traveling waves has been a topic of interest in the study of nonlinear

dispersive wave equations. In the absence of y-dependence, (1) and (2) reduce to their one-dimensional form which has
been derived in various fields of physics (see, e.g. [4–7]). The existence of the one-dimensional solitary wave solutions for
the LSI equations has been established in [8]. In fact, the one-dimensional solitary wave solutions of the LSI equations are
given explicitly by

φ(x, t) = 21/2c3/2 sech[c(x+ ct)] exp
{
i
(
−
c
2
x+

3
4
c2t
)}

, (3)

ux(x, t) = −2c2 sech2[c(x+ ct)] (4)
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with c > 0 [4]. It is therefore natural to ask whether the localized solitary wave solutions of the LSI equations in the two-
dimensional case exist as well. In the present work, we resolve the issue of existence of two-dimensional solitary waves for
the LSI equations.
We consider two-dimensional localized solitary wave solutions of (1) and (2) in the form

φ(x, t) = ei(ωt+βx)Φ(x+ ct, y+ bt), u(x, t) = U(x+ ct, y+ bt) (5)
where ω, c, b, β ∈ R andΦ ∈ H1(R2), and∇U ∈ L2(R2) are real-valued functions withΦ(ξ , η),∇Φ(ξ , η),∇U(ξ , η)→ 0
as ξ 2+η2 →∞. HereH1 is the usual Sobolev space onR2 and L2 is the Hilbert space equippedwith the usual inner product
and norm denoted by 〈·, ·〉 and ‖ · ‖2, respectively. In Theorem 2 of Section 2, we are able to prove the non-existence of
two-dimensional localized solitary wave solutions of the LSI equations if γ ≤ 0 or γ c ≤ 0 or ω ≤ −c2/4. In Theorem 4 of
Section 3, we prove the existence of two-dimensional localized solitary waves of the LSI equations when γ > 0, γ c > 0
and ω > −c2/4. The way to show the non-existence and the existence of solitary wave solutions passes from Pohozaev-
type identities. The problem of proving the existence of solitary wave solutions for the LSI equations reduces to proving the
existence of nontrivial solutions for a single second-order partial differential equation with a nonlocal term.

2. Non-existence of solitary wave solutions

Substituting (5) into (1) and (2) we obtain

Φxx − (ω + β
2)Φ = ΦUx, (6)

(c + 2β)Φx + bΦy = 0, (7)

cUxx + bUxy + γUyy = −(Φ2)x. (8)

By (7) Φ is constant along the characteristics lines bx − (c + 2β)y = constant. For a function Φ ∈ H1(R2) this could be
accomplished if and only if β = −c/2 and b = 0. Then (5) becomes

φ(x, t) = ei(ωt−
c
2 x)Φ(x+ ct, y), u(x, t) = U(x+ ct, y). (9)

If ω̃ = ω + c2/4, then (6) and (8) reduce to

Φxx − ω̃Φ = ΦUx, (10)

cUxx + γUyy = −(Φ2)x. (11)
We now establish Pohozaev-type identities from which one can prove the non-existence of solitary wave solutions.

Lemma 1. Let (φ, u) be a solitary wave solution of (1) and (2) in the form (9) with Φ ∈ H1(R2), ∇U ∈ L2(R2). Then Φ and U
must satisfy∫

R2
[c(Ux)2 − γ (Uy)2]dxdy = 0, (12)∫

R2
[(Φx)

2
− ω̃Φ2]dxdy = 0, (13)∫

R2
[(Φx)

2
− γ (Uy)2]dxdy = 0. (14)

Proof. These identities are derived by direct computations. Firstly, wemultiply (10) by xΦx, integrate the resulting equation
over R2 and use (11). After two uses of integration by parts we get∫

R2

[
(Φx)

2
− ω̃Φ2 +

c
2
(Ux)2 −

γ

2
(Uy)2

]
dxdy = 0. (15)

Similarly, we multiply (10) by yΦy, integrate the resulting equation over R2 and use (11). After several integrations by parts
we obtain∫

R2

[
(Φx)

2
+ ω̃Φ2 −

c
2
(Ux)2 −

3γ
2
(Uy)2

]
dxdy = 0. (16)

Finally, we multiply (10) byΦ , integrate the resulting equation over R2 and use (11). After several integrations by parts we
obtain∫

R2
[(Φx)

2
+ ω̃Φ2 − c(Ux)2 − γ (Uy)2]dxdy = 0. (17)

Subtracting (16) from (17) yields (12). Using (12) in (15) gives (13). Finally, substituting (12) and (13) into (17) gives (14).
This completes the proof. �
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Theorem 2. The LSI equations, (1) and (2), have no nontrivial solitary wave solution of the form (9) if γ ≤ 0 or γ c ≤ 0 or
ω ≤ −c2/4.

Proof. The identities (12)–(14) imply thatΦ ≡ 0 and that U ≡ constant if γ ≤ 0 or γ c ≤ 0 or ω ≤ −c2/4. This shows that
no solitary wave solutions of the form (9) to (1) and (2) exist under any one of the conditions. �

Remark 1. It is worth adding further that the result obtained in Theorem 2 depends on the sign of γ which characterizes
transverse dispersion. When γ < 0, our non-existence result in Theorem 2 covers the whole parameter range for c and it
does not leave a gap in the parameter range where the non-existence result could not be established. That is, (1) and (2)
have no nontrivial standing wave solutions in the form φ = eiωtΦ(x, y), u = U(x, y) which corresponds to the case c = 0
in (9), as well as right-going and left-going solitary waves which corresponds to c > 0 and c < 0, respectively. When
γ > 0, (1) and (2) have no left-going solitary waves and, if ω ≤ −c2/4, no right-going solitary waves. Notice that there is
no non-existence result for the case γ > 0, c > 0 and ω > −c2/4.

Remark 2. The non-existence result in Theorem 2 is consistent with the line-solitary wave solutions given in [3] and the
solitary wave solutions (3)-(4). These solitary wave solutions are not in L2(R2) and therefore cannot be taken into account
within the context of Theorem 2.

Remark 3. When we consider the one-dimensional caseΦ = Φ(x), U = U(x), Eqs. (10) and (11) reduce to

Φ ′′ − ω̃Φ +
1
c
Φ3 = 0, (18)

where we have assumed that Φ , U ′ → 0 as x → ±∞. We note that the solitary wave solution (3) is a solution of (18) for
the special case ω̃ = c2.

3. Existence of solitary wave solutions

Assume that γ > 0, c > 0 and ω > −c2/4. We first convert Eqs. (10)–(11) into a single equation with a nonlocal term.
For this aim we take the Fourier transform of (11) and obtain

Û(k1, k2) =
ik1

ck21 + γ k
2
2
Λ̂(k1, k2)

where the symbol̂denotes the Fourier transform of the associated quantity, k1 and k2 Fourier variables corresponding to
x and y, and Λ̂ = F (Φ2) with F denoting Fourier transform. Then we get Ux = −K(Φ2) whereK is a nonlocal operator
defined by

F {K(v)} = α(k1, k2)̂v(k1, k2) (19)

with α(k1, k2) = k21/(ck
2
1 + γ k

2
2). If we eliminate U from (10) using the above result, we get the nonlocal equation

Φxx − ω̃Φ +K(Φ2)Φ = 0. (20)

For convenience we define a quadratic functionalB on L2(R2) in the form:

B(v) =

∫
R2

K(v(x, y))v(x, y)dxdy ≡ 〈K(v), v〉.

The following lemma gives Pohozaev-type identities for the nonlocal equation (20), which will be used later.

Lemma 3. Let (φ, u) be a solitary wave solution of (1) and (2) in the form (9) with Φ ∈ H1(R2), ∇U ∈ L2(R2). Then Φ and U
must satisfy

−2ω̃
∫

R2
Φ2dxdy+B(Φ2) = 0, (21)∫

R2
[(Φx)

2
+ ω̃Φ2]dxdy−B(Φ2) = 0. (22)

Proof. These identities are derived by direct computations. Firstly, we multiply (20) by xΦx and integrate the resulting
equation over R2. Using the Parseval theorem and the definition ofB(Φ2), we obtain∫

R2
[(Φx)

2
− ω̃Φ2]dxdy+

1
2

∫
R2
(Λ̂)2

(
α − k1

∂α

∂k1

)
dk1dk2 = 0. (23)
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Similarly, we multiply (20) by yΦy and integrate the resulting equation over R2. Using the Parseval theorem and the
definition ofB(Φ2), we obtain∫

R2
[(Φx)

2
+ ω̃Φ2]dxdy−

1
2

∫
R2
(Λ̂)2

(
α − k2

∂α

∂k2

)
dk1dk2 = 0. (24)

Finally, if we multiply (20) byΦ and integrate the resulting equation over R2, after one integration by parts we obtain∫
R2
[(Φx)

2
+ ω̃Φ2]dxdy−

∫
R2
(Λ̂)2αdk1dk2 = 0 (25)

which is equivalent to (22). Subtracting (24) from (23), we obtain (21) where the identity

k1
∂α

∂k1
+ k2

∂α

∂k2
= 0

is used. This completes the proof. �

Using the Pohozaev identities (21) and (22) we formulate a variational problemwhich is equivalent to (20). In this regard
we show that the critical points of the variational problem defined for the functional

J(Φ) =
‖Φ‖22‖Φx‖

2
2

B(Φ2)
=
‖Φ‖22‖Φx‖

2
2

〈K(Φ2),Φ2〉
(26)

solve (20) in the weak sense. IfΦ minimizes J , then the first variation of J must be zero: δJ = 0. To compute δJ , we compute
the first variation of B(Φ2) in the form δB(Φ2) = 〈2ΦB ′(Φ2), η〉 for all η ∈ C∞c (R

2) where B ′(v) denotes the Frechet
derivative of B(v). To compute B ′(v) we first use the Parseval theorem and the linearity of the Fourier transform in the
identity

B(v + η)−B(v) = 〈K(v + η), v + η〉 − 〈K(v), v〉,

and we get

B(v + η)−B(v)− 2
∫

R2
K(v)ηdxdy =

∫
R2
(̂η)2αdk1dk2.

Then, using 0 ≤ α(k1, k2) ≤ 1/c in this equation we obtain the inequality

‖B(v + η)−B(v)− 〈2K(v), η〉‖22 ≤
1
c
‖η‖22.

This implies that 〈B ′(v), η〉 = 〈2K(v), η〉. Now we are ready to compute δJ which is given by

δJ =
1

[B(Φ2)]2

{
2[〈Φ,Φ〉〈Φx, ηx〉 + 〈Φx,Φx〉〈Φ, η〉]〈K(Φ2),Φ2〉 − 4〈Φ,Φ〉〈Φx,Φx〉〈ΦK(Φ2), η〉

}
= 0. (27)

Substitution of (21) and (22) into (27) gives

δJ =
−4ω̃〈Φ,Φ〉2

〈K(Φ2),Φ2〉2

{
〈Φxx − ω̃Φ +K(Φ2)Φ, η〉

}
= 0.

This implies that any nonzero critical point of J given in (26) solves (20) in the weak sense. Thus the problem of existence of
solitary wave solutions reduces to the problem of existence of minimum of the nonlinear functional J .
Eq. (20) is a special case of the semi-linear elliptic equation [9,10]

1Φ − ω̃Φ + κΦ3 + bK(Φ2)Φ = 0, Φ ∈ H1(R2) (28)

where κ and b are parameters, 1 denotes the two-dimensional Laplace operator andK(Φ2) is a nonlocal operator whose
Fourier transform is in the form (19) with a general symbol α. Eq. (28) appears during the study of existence of solitary wave
solutions for the Davey–Stewartson equation [9] and the generalized Davey–Stewartson equation [10]. In [9], using Lions’
concentration-compactness method [11], it has been shown that there are nontrivial solutions to (28) for ω̃ > 0, b > 0 and
κ + bαm > 0 where αm denotes an upper bound of α. In [12], the same result has been obtained using Lieb’s Compactness
Lemma [13]. Since our nonlocal Eq. (20) is a special case of (28) with κ = 0, b = 1, ω̃ > 0 and αm = 1/c > 0, the above
existence result is also valid for (20). This establishes the existence of the nontrivial solitary wave solutions of (1) and (2).

Theorem 4. The LSI equations, (1) and (2), have a nontrivial solitary wave solution of the form (9) if γ > 0, c > 0 and
ω > −c2/4.
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