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Abstract

In this paper, we investigate the transverse linear instability of one-dimensional solitary
wave solutions of the coupled system of two-dimensional long-wave-short-wave interaction
equations. We show that the one-dimensional solitary waves are linearly unstable to
perturbations in the transverse direction if the coefficient of the term associated with
transverse effects is negative. This transverse instability condition coincides with the
non-existence condition identified in the literature for two-dimensional localized solitary
wave solutions of the coupled system.
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1. Introduction

In this study, we conduct linear transverse instability analysis of the one-dimensional
solitary wave solutions of the two dimensional long-wave-short-wave interaction (2D-LSI)
equations of the form

iφt + αφxx = βφux, (1)

uxt + γuyy = −β(|φ|2)x, (2)

where subscripts refer to partial derivatives, α, β and γ are real parameters, (x, y) ∈ R2

are two spatial variables, t ∈ R+ is a time-like variable, φ = φ(x, y, t) is a complex-valued
function and u = u(x, y, t) is a real-valued function.

The 2D-LSI system arises as a mathematical model in various contexts such as water
waves [1], geometric optics [2] and elastic waves [3]. It describes the interaction between
the high-frequency and low-frequency waves near the long-wave short-wave resonance
where the group speed of short waves is equal to the phase speed of long waves. Moreover,
in the derivation of these equations, it is assumed that the waves move primarily in
the x-direction and that the variations in the y-direction are more gradual. Thus the
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parameter γ measures the relative magnitude of transverse effects in the y−direction
for the wave motion essentially in the x−direction. The well-posedness of the Cauchy
problem associated with the 2D-LSI equations has been established in [2]. Assuming
α, β > 0, it is proved in [4] that the two-dimensional localized solitary wave solutions
of (1)-(2) may exist in appropriate function spaces if γ > 0 and they do not exist if
γ < 0. The choice of the sign of γ clearly determines the underlying structure of the
localized travelling wave solutions and hence the cases of γ > 0 and γ < 0 define quite
distinct nature of the 2D-LSI system. As the 2D-LSI system has one-dimensional (i.e.
y-independent) solitary wave solutions too, it seems natural to question the instability of
the one-dimensional solitary waves to two-dimensional perturbations. Such a transverse
instability analysis of line solitary waves for (1)-(2) is the subject of the present study. In
particular we show that the one-dimensional solitary waves are linearly unstable if γ < 0
with respect to transverse perturbations. In other words, we establish that the condition
for the transverse linear instability of one-dimensional solitary waves of (1)-(2) coincides
with the condition given in [4] for the nonexistence of two-dimensional solitary waves.

The paper is organized as follows. Section 2 is devoted to one-dimensional solitary
wave solutions of (1)-(2). In Section 3, a new coordinate system moving with one-
dimensional solitary waves is introduced and a discussion of transverse linear instability
of one-dimensional solitary wave solutions is given.

Throughout the paper, as usual, we use the notation 〈., .〉 to denote the standard
inner product on the Hilbert space L2(R) , defined as 〈f, g〉 =

∫
R f(x)g∗(x)dx, and also

use ‖.‖p to denote the norm ‖f‖p = (
∫
R |f(x)|pdx)1/p in the Lp(R) space.

2. One-Dimensional Solitary Wave Solutions

We start this section by stating an important property of the 2D-LSI equations: the
scaling-invariance property. It says that the system (1)-(2) is invariant under the scaling
transformation

φλ(x, y, t) = λ3/2φ(λx, λ3/2y, λ2t), uλ(x, y, t) = λu(λx, λ3/2y, λ2t) (3)

for λ > 0. If y−dependence is dropped from (1)-(2), then the one-dimensional solutions
φ(x, y, t) = Φ(x, t) and u(x, y, t) = U(x, t) of the 2D-LSI system satisfy the 1D-LSI
equations

iΦt + αΦxx = βΦUx, (4)

Uxt = −β(|Φ|2)x. (5)

These equations were also derived in various fields of physics to describe the resonant
interaction of one-dimensional long waves and short waves [5, 6, 7, 8]. As is well known,
the 1D-LSI system (4)-(5) has a localized travelling wave solution of the form

Φ(x, t) =

(
2α

β2

)1/2

sech(x+ t) exp{i[− x

2α
+ α(1− 1

4α2
)t]},

Ux(x, t) = −2α

β
sech2(x+ t) (6)
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for α > 0 [4], which represents a solitary wave moving to the left at speed 1. Using the
scaling property (3) with λ = c > 0, a more general form of the solitary wave solution
(6) can be given as follows:

Φc =

(
2αc3

β2

)1/2

sech[c(x+ ct)] exp{i[− cx
2α

+ α(1− 1

4α2
)c2t]},

Ucx = −2αc2

β
sech2[c(x+ ct)], (7)

which represents a solitary wave moving at a constant speed c. The stability of the above
solitary waves with respect to small but finite spatial perturbations, i.e. the so-called
orbital stability, was investigated by Laurençot [9] and, using the Lyapunov stability
analysis, it was shown that they are orbitally stable.

A natural question to then ask, which is the topic of the next section, is whether
the one-dimensional solitary waves (7) are unstable to small transverse perturbations in
two dimensions. This is sometimes called the transverse instability problem and it may
also be thought as a structural instability problem since the 2D-LSI system (1)-(2) is a
generalization of the 1D-LSI system (4)-(5).

3. Transverse Instability of Line Solitary Waves

In this section, we discuss the transverse linear instability of the 1D-solitary wave so-
lutions of the 2D-LSI system using the perturbation method applied by Zakharov and
Rubenchik [10] to deduce instability of 1D standing wave solutions of the 3D nonlinear
Schrödinger equations. Because of the scale invariance property of the 2D-LSI equations,
in the remainder of this study we only investigate transverse instability of the solitary
wave solutions of the form (6). For convenience, we select a new coordinate system
(X,Y, T ) defined by X = x + t, Y = y, T = t, which moves together with the unper-
turbed 1D-solitary wave at speed 1. The 2D-LSI system (1)-(2) is then transformed into
the new coordinate system and the resulting equations are

i(φt + φx) + αφxx = βφux, (8)

uxt + uxx + γuyy = −β(|φ|2)x, (9)

where we have replaced the letters X,Y and T by x, y and t, respectively, for the conve-
nience of presentation. Transformation of (6) into the new coordinate system yields

Φ(x, t) =

(
2α

β2

)1/2

sechx exp{i[− x

2α
+ α(1 +

1

4α2
)t]}, Ux(x, t) = −2α

β
sech2x, (10)

the transverse instability of which is to be examined in detail.
From now on, we focus on issues concerning the transverse linear instability of the

one-dimensional solutions (10) of (8)-(9). For this aim we first write a perturbed solution
of (8)-(9) in the form

φ(x, y, t) = Φ(x, t) + ψ̃(x, y, t), u(x, y, t) = U(x, t) + ṽ(x, y, t), (11)
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where ψ̃(x, y, t) and ṽ(x, y, t) denote transverse weak perturbations. Substituting the
perturbed solution (11) into the system (8)-(9) and then linearizing the resulting equa-

tions with respect to ψ̃(x, y, t) and ṽ(x, y, t), we arrive at a set of linear coupled equations

for ψ̃(x, y, t) and ṽ(x, y, t) :

i(ψ̃t + ψ̃x) + αψ̃xx = β(Φṽx + Uxψ̃) (12)

ṽxt + ṽxx + γṽyy = −β(Φψ̃∗ + Φ∗ψ̃)x, (13)

where ∗ denotes the complex conjugate of the related quantity. In order to simplify the
presentation we write ψ̃ and ṽ in the form

ψ̃(x, y, t) =

(
2α

β2

)1/2

ψ(x, y, t) exp{i[− x

2α
+ α(1 +

1

4α2
)t]}, ṽ(x, y, t) =

2α

β
v(x, y, t).

In terms of ψ(x, y, t) and v(x, y, t), the system (12)-(13) becomes

iψt − αψ + αψxx = 2α[vx R(x)− ψ R2(x)] (14)

vxt + vxx + γvyy = −[(ψ + ψ∗) R(x)]x, (15)

where, for convenience, we have used the notation R(x) = sech x as we do henceforth. If
we decompose ψ(x, y, t) into its real and imaginary parts by writing ψ(x, y, t) = p(x, y, t)+
iq(x, y, t), then (14)-(15) takes the following form

−pt = αqxx + α(2 R2(x)− 1)q, (16)

qt = αpxx + α(2 R2(x)− 1)p− 2α R(x)vx, (17)

−vxt = vxx + γvyy + 2(R(x) p)x (18)

for the real-valued perturbations p, q and v.
We now assume that the real-valued perturbations are of the form

p(x, y, t) = P (x)eiky+Ωt + P ∗(x)e−iky+Ω∗t (19)

q(x, y, t) = Q(x)eiky+Ωt +Q∗(x)e−iky+Ω∗t (20)

v(x, y, t) = V (x)eiky+Ωt + V ∗(x)e−iky+Ω∗t, (21)

where k ∈ R, Ω ∈ C and P (x), Q(x) and V (x) are complex-valued functions. It should be
noted that for transverse instability of the one-dimensional solitary waves, the parameter
Ω must have positive real part: Re(Ω) > 0. Substitution of (19)-(21) into (16)-(18) gives
rise to a set of coupled ordinary differential equations for P , Q and V

LQ = ΩP, (22)

LP + 2αRV ′ = −ΩQ, (23)

−V ′′ + γk2V − 2(RP )′ = ΩV ′, (24)

where the prime denotes differentiation with respect to x and L is the linear self-adjoint

operator defined by L = α[− d2

dx2
+ 1 − 2R2(x)]. The next step is to assume that both
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a candidate solution (P (x), Q(x), V (x)) of (22)-(24) and the parameter Ω(k) can be
written as an asymptotic power series expansion in k

P (x) = P0(x) + kP1(x) + k2P2(x) + · · · , (25)

Q(x) = Q0(x) + kQ1(x) + k2Q2(x) + · · · , (26)

V (x) = V0(x) + kV1(x) + k2V2(x) + · · · , (27)

Ω = kΩ1 + k2Ω2 + · · · . (28)

Substituting (25)-(28) into (22)-(24) and then equating terms of the same order in k we
obtain a hierarchical set of ordinary differential equations. In the remaining part of this
section we solve explicitly the equations corresponding to the first three orders of the
hierarchy.

The lowest-order equations of the hierarchy are obtained in the form

LQ0 = 0, (29)

LP0 = −2αRV ′0 , (30)

V ′′0 + 2(RP0)′ = 0. (31)

If we integrate (31) once and use the boundary conditions at infinity, i.e. V ′(x) → 0 as
x → ±∞, we get V ′0(x) = −2R(x)P0(x). Using this result in (30) we obtain NP0 = 0

where N is the linear operator defined by N = α[− d2

dx2
+ 1 − 6R2(x)]. The functions

R(x) and R′(x) are the kernels of the operators L and N , respectively, and the solutions
of the equations LQ0 = 0 and NP0 = 0 are of the form

Q0(x) = a0sechx = a0R(x), P0(x) = −b0 tanhx sechx = b0R
′(x),

where a0 and b0 are arbitrary constants. It follows from the relations V ′0 = −2RP0 and
P0 = b0R

′ that V0(x) = −b0R2(x) + d0 where d0 is an arbitrary constant.
The first-order equations in k are

LQ1 = Ω1P0, (32)

LP1 + 2αRV ′1 = −Ω1Q0, (33)

V ′′1 + 2(RP1)′ = −Ω1V
′
0 . (34)

A solution of (32) is given by

Q1(x) = −b0Ω1

2α
xR(x) + a1R(x) (35)

where a1 is an arbitrary constant. Integrating (34) once and using the boundary condi-
tions at infinity, i.e. V ′1(x) → 0 as x → ±∞, we get

V ′1(x) = −2R(x)P1(x) + b0Ω1R
2(x) (36)

and d0 = 0. Substitution of this result into (33) gives

NP1(x) = −a0Ω1R(x)− 2αb0Ω1R
3(x). (37)
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A solution of this equation is given as follows:

P1(x) =
a0Ω1

2α
[xR′(x) +R(x)] +

b0Ω1

2
R(x) + b1R

′(x) (38)

where b1 is an arbitrary constant. Since Q0 and P0 are the kernels of L and N , the
right-hand sides of (32) and (37) must be orthogonal to Q0 and P0, respectively. That
is, the orthogonality conditions 〈LQ1, Q0〉 = 0 and 〈NP1, P0〉 = 0 hold. Noting that
〈R,R′〉 = 0 and 〈R3, R′〉 = 0, we address this issue through a simple calculation

〈LQ1, Q0〉 = 〈Q1,LQ0〉 = Ω1a0b0〈R,R′〉 = 0,

〈NP1, P0〉 = 〈P1,NP0〉 = −Ω1a0b0〈R,R′〉 − 2αΩ1b
2
0〈R3, R′〉 = 0.

The second-order equations in k are

LQ2 = Ω1P1 + Ω2P0, (39)

LP2 + 2αRV ′2 = −(Ω1Q1 + Ω2Q0), (40)

V ′′2 − γV0 + 2(RP2)′ = −(Ω1V
′
1 + Ω2V

′
0). (41)

Substitution of (35), (36) and (38) into (39)-(40) gives

LQ2 = Ω1

(
a0Ω1

2α
(xR)′ +

b0Ω1

2
R

)
+ (Ω1b1 + Ω2b0)R′, (42)

LP2 + 2αRV ′2 = Ω2
1

b0
2α

(xR)− (Ω1a1 + Ω2a0)R, (43)

V ′′2 + γb0R
2 + 2(RP2)′ =

a0Ω2
1

α
R(xR)′ + (Ω1b1 + Ω2b0)(R2)′. (44)

Equation (42) can be solved if the right-hand side is orthogonal to the kernel of L, i.e.
to Q0. This orthogonality condition leads to

〈LQ2, R〉 =
Ω2

1

2

( a0

2α
+ b0

)
‖R‖22 = 0, (45)

where (44) is used. For Ω1 6= 0, this result says that the first orthogonality condition

〈LQ2, Q0〉 = 0 holds provided that
a0

2α
+b0 = 0 which gives a0 = −2αb0 and eliminates a0

from the problem. To find the restriction imposed by the second orthogonality condition
〈NP2, P0〉 = 0, using (43) we first compute

〈LP2, R
′〉 = −α〈V ′2 , (R2)′〉 − b0Ω2

1

4α
‖R‖22. (46)

Then, using integration by parts and (44), one gets

α〈V ′′2 , R2〉 = −α〈V ′2 , (R2)′〉 = −γαb0‖R‖44 −
3

2
αb0Ω2

1‖R‖44 + 4α〈R2, R′P2〉. (47)

When we substitute (47) into (46), we obtain

〈NP2, R
′〉 = −γαb0‖R‖44 −

3

2
αb0Ω2

1‖R‖44 −
b0Ω2

1

4α
‖R‖22. (48)
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As a result, the second orthogonality condition holds provided that

4γα2‖R‖44 + Ω2
1

(
6α2‖R‖44 + ‖R‖22

)
= 0 (49)

with Ω1 6= 0. Using ‖R‖22 =

∫
R

sech2xdx = 2, ‖R‖44 =

∫
R

sech4xdx =
4

3
in (49) and

solving the resulting equation for Ω2
1 gives

Ω2
1 = − 8α2γ

12α2 + 3
. (50)

This expression shows that the eigenvalues ± Ω1 are purely real if γ < 0. Since the
parameter γ measures transverse effects, the unperturbed solitary wave solution is said
to be linearly unstable against transverse perturbations in the case of negative dispersion
(γ < 0).

At this point, it is interesting to note that the condition given here for the transverse
linear instability of one-dimensional solitary waves of the 2D-LSI equations is the same
as that imposed in [4] for the nonexistence of two-dimensional localized solutions of the
2D-LSI equations. Besides providing an explanation for this apparent coincidence, one
important question about the 2D-LSI equations still remains open for investigation. This
issue is to extend our instability analysis to the regime in which transverse perturbations
become large, that is, to find out for what values of γ the one-dimensional solitary wave
solutions of the 2D-LSI equations are nonlinearly unstable with respect to transverse
perturbations.
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