Melih Kandemir

webpage

I am an assistant professor at Özyeğin UniversityComputer Science Department. My research activity focuses primarily on Bayesian inference of deep neural nets, transfer learning, meta-learning, few-shot learning, reinforcement learning, and application of these approaches to computer vision and medical image analysis problems.

E-mail: name [dot] surname [at] ozyegin [dot] edu [dot] tr
Address: Nişantepe mah. Orman sok. 34-36, Alemdağ, Çekmeköy, İstanbul
Office: EF 104 | Phone: +90-216-564-9537
Scholar | GitHub | LinkedIn

NEWS

  • 24.11.2017- Our paper at NoF 2017 has received the Best Paper Award.
  • 19.10.2017- Received TÜBİTAK 2232 Career Reintegration Grant
  • 21.08.2017- Gave an invited talk at the Turkish Machine Learning Summer School 2017 on probabilistic deep learning.
  • 09.08.2017- Gave an interview to the pioneer AI company of the Turkish market, Etiya. The link is here.

BIO

LATEST WORK

(Full list available here)

  • Prediction of Active UE Number with Bayesian Neural Networks for Self-Organizing LTE Networks
    Ö. Narmanlıoğlu, E. Zeydan, M. Kandemir, T. Kranda,
    Network of the Future (NoF), Proceedings, (2017)
    Best Paper Award
  • Variational Bayesian multiple instance learning with Gaussian processes
    M. Haußmann, F.A. Hamprecht, M. Kandemir
    CVPR, Proceedings, (2017)  [PDF]
  • Variational weakly supervised Gaussian processes
    M. Kandemir, M. Haußmann, F. Diego, K. Rajamani, J. van der Laak, F.A. Hamprecht
    BMVC, Proceedings, (2016), (Oral) [PDF] [Code]
  • Gaussian process density counting from weak supervision
    M. von Borstel, M. Kandemir, P. Schmidt, M. Rao, K. Rajamani, F.A. Hamprecht
    ECCV, Proceedings, (2016) [PDF]

OLDER FAVORITES

  • Asymmetric transfer learning with deep Gaussian processes
    M. Kandemir
    ICML, Proceedings, (2015) [PDF] [Code][Talk]
  • Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals
    J.P. Kauppi *, M. Kandemir *, V.M. Saarinen, L. Hirvenkari, L. Parkkonen, A.Klami, R. Hari, S. Kaski
    NeuroImage, (2015) * Equal Contributions [PDF]
  • Instance label prediction by Dirichlet process multiple instance learning
    M. Kandemir, F.A. Hamprecht
    UAI, Proceedings, (2014) [PDF] [Code]
  • Empowering multiple instance histopathology cancer diagnosis by cell graphs
    M. Kandemir, C. Zhang, F.A. Hamprecht
    MICCAI, Proceedings, (2014) [PDF] [Code]