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In this paper, we consider a three-component system of 1D long wave–short wave interaction equations.
The system has two-parameter family of solitary wave solutions. We prove orbital stability of the solitary
wave solutions using variational methods.
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1. Introduction

Wave propagation problems in various continuous media, such as fluids, solids and optical fibers, lead
to single or coupled partial differential equations. While the Korteweg-de Vries-type equations describe
propagation of long waves, the non-linear Schrödinger (NLS)-type equations describe propagation of
envelope of short waves in continuous media, where a different length scale is defined in each case. If the
phase speed of a long wave coincides with the group speed of a short wave, then the resonant interaction
between long and short waves occur. This interaction is modelled by a two-component coupled evolution
equations called the long wave–short wave interaction (LSI) equations,

iφt + φxx = βwφ,

wt = ν(|φ|2)x,

}
(1.1)

whereφ: R × R+ → C, w: R × R+ → R, β andν arereal constants. Here,w represents a long-
wave mode andφ denotes short-wave mode propagating in a continuous medium. System (1.1) was
derived to describe the resonant interaction of waves propagating on the surface of water (Djordjevic
& Redekopp, 1977). The same system was also obtained for the resonant interaction of internal gravity
waves (Grimshaw, 1977). Motivated by the physical significance, various aspects of (1.1), such as soli-
tary wave solutions, stability of solitary wave solutions, well posedness of the Cauchy problem, have
been widely considered (Ma, 1978;Tsutsumi & Hatano, 1994;Laurençot, 1995;Ginibre & Tsutsumi,
1997).

On the other hand, if there exist two short waves with the same group speed and a long wave whose
phase speed is equal to the group speed of short waves, then long wave–short wave resonant interaction
arises among the wave modes. This phenomena is modelled by the three coupled LSI equations

iφt + φxx = βwφ,
iψt + ψxx = βwψ,

wt = β(|φ|2 + |ψ |2)x,





(1.2)

whereφ,ψ : R× R+ → C, w: R× R+ → R andβ is a real constant. Here,w represents a long-wave
mode andφ andψ denote short-wave modes. System (1.2) is a generalization of the two component LSI
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STABILITY OF SOLITARY WAVES FOR THREE-COUPLED LSI EQUATIONS 583

systemand appears, for instance, in water waves (Craik, 1985) and in a bulk elastic medium (Erbay,
2000). Motivated by physical applications, various aspects of (1.2) are investigated analytically and
numerically (Ma, 1981;Edenet al.,2005;Borluk et al.,2007). The main purpose of the present study
is to show that solitary wave solutions of (1.2) are stable in some sense.

The LSI system (1.2) has a two-parameter family of solitary wave solutions of the form

φs(x, t) = Φ(x − ct)eiωt ,

ψs(x, t) = Ψ (x − ct)eiωt ,
ws(x, t) = W(x − ct),





(1.3)

whereW(x) = −β(|Φ(x)|2+|Ψ (x)|2)/c, (Φ(x), Ψ (x)) = (R1(x), R2(x))e
i cx
2 , c > 0 and 4ω−c2 > 0.

Here,W ∈ L2(R) and(R1, R2) ∈ H1(R)× H1(R) arepositive solutions of

−uxx +

(

ω −
c2

4

)

u −
β2

c
(u2 + v2)u = 0,

−vxx +

(

ω −
c2

4

)

v −
β2

c
(u2 + v2)v = 0.






(1.4)

The mathematically exact theory for stability of solitary waves dates back to (Benjamin,1972) for
the Korteweg-de Vries-type equations. In that work, a Lyapunov functional was constructed using the
conserved quantities of the Korteweg-de Vries equation, and it was shown that the stability of solitary
waves relied on suitable lower and upper bounds on the variation of the Lyapunov functional. In a later
study (Weinstein, 1986), the same method has been used to show the stability of standing waves of the
NLS equation, which has been already proved inCazenave & Lions(1982) using the concentration–
compactness methods. InLaurençot(1995), using the so-called Lyapunov method, stability of solitary
wave solutions of (1.1),φ(x, t) = R(x − ct)eiωt+i c

2 (x−ct), w(x, t) = W(x − ct), where(R,W) ∈
H1(R) × L2(R), was established whenc > 0 and 4ω − c2 > 0. In the present paper, our aim is to
extend the above method to the three component LSI system, and show that the solitary waves of (1.2)
are orbitally stable.

The organization of the paper is as follows: The local well posedness of the Cauchy problem for
(1.2) is discussed, and conserved integrals for the same system is given in Section 2. A variational
characterization of the solitary waves, which will be used in the proof of the stability of solitary wave
solutions, is briefly presented in Section 3. We state the stability theorem that relies on a lower bound
of the second variation of the Lyapunov functional in Section 4. Using the analysis of the unconstrained
variational problem presented briefly in Section 3, the lower bound is proved and the stability of solitary
waves is established in the same section.

Notations.Throughout the paperL p(R), 1 6 p < ∞, represents the space ofp-integrable func-
tions.‖ f ‖p denotesthe L p(R) normof f, 1 6 p 6 ∞. H1(R) = W1,2(R) is the Sobolev space off
for which the norm‖ f ‖2

H1 = ‖ f ‖2
2 + ‖∇ f ‖2

2 is finite. 〈 f, g〉 refers to the inner product off andg in

L2(R).

2. Local well posedness of Cauchy problem

The Cauchy problem for the two component LSI system (1.1) was studied inTsutsumi & Hatano(1994)
for initial data(φ0, w0) ∈ H1/2(R) × L2(R). A contraction technique together with smoothing effect
estimates (Kenig et al., 1991,1993) was used to prove existence and uniqueness of solutions of the
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584 H. BORLUK AND S. ERBAY

initial value problem in suitable Banach spaces. Introducing a regularized system, the existence and
and uniqueness results for (1.1) was also established inLaurençot(1995) for the initial data(φ0, w0) ∈
H1(R) × L2(R) that was essential to the study of orbital stability of solitary waves. Later, the local-
well-posedness result for (1.1) was improved inGinibre & Tsutsumi(1997) for initial data(φ0, w0) ∈
Hk(R)× L1/k(R), 0< k < 1/2.

TheCauchy problem for the three component LSI system (1.2)

iφt + φxx = Fφ(φ,ψ),
iψt + ψxx = Fψ(φ,ψ),
φ(x, 0)= φ0(x), ψ(x, 0)= ψ0(x)





(2.1)

was considered inEdenet al. (2005) for the initial data(φ0, ψ0, w0) ∈ H1/2(R) × H1/2(R) × L2(R),
where

(Fφ, Fψ) =



β2

t∫

0

(|φ(x, s)|2 + |ψ(x, s)|2)x ds+ βw0(x)



 (φ(x, t), ψ(x, t)).

In that study, followingTsutsumi & Hatano(1994), a fixed point method was used to establish the
existence and uniqueness of local in time solutions of (1.2) in a suitable Banach space:

THEOREM1 Let (φ0, ψ0) ∈ H1/2(R)×H1/2(R) andw0 ∈ L2(R)∩L∞(R). There exists a unique solu-
tion (φ(x, t), ψ(x, t)) of the Cauchy problem (2.1) on [0, T ] for T > 0 such thatφ ∈ C

(
[0,T ];H1/2(R)

)
,

φx ∈ L∞
(
R; L2[0, T ]

)
, ψ ∈ C

(
[0, T ]; H1/2(R)

)
andψx ∈ L∞

(
R; L2[0, T ]

)
.

Theconserved integrals of the LSI system (1.2) are of the form (Borluk et al.,2007)

I1 =
∫

R

|φ|2 dx, I2 =
∫

R

|ψ |2 dx,

I3 =
∫

R

[w2 + i (φ∗φx − φφ∗
x + ψ∗ψx − ψψ∗

x )] dx,

I4 =
∫

R

[|φx|
2 + |ψx|

2 + β(|φ|2 + |ψ |2)w]dx, (2.2)

whereI1 andI2 arethe mass functionals,I3 is the momentum functional andI4 is the energy functional,
i.e. the Hamiltonian. It should be pointed out that the conservation of mass,I1 and I2, and momentum,
I3, make sense since(φ(x, t), ψ(x, t), w(x, t)) ∈ H1/2(R) × H1/2(R) × L2(R), whereas the the con-
servation of energy does not. Because the energy functional,I4, plays a major role in the orbital stability
computations, and the natural space for energy isH1(R)× H1(R)× L2(R), we will assume in the rest
of the present study that if the initial data(φ0, ψ0, w0) arechosen fromH1(R)× H1(R)× L2(R), then
the corresponding solution(φ(x, t), ψ(x, t), w(x, t)) remains in the same space.

3. Variational characterization of solitary waves

In this section, we briefly discuss a variational characterization of solutions for (1.4), which plays a key
role in the stability analysis of solitary waves (1.3).
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STABILITY OF SOLITARY WAVES FOR THREE-COUPLED LSI EQUATIONS 585

Motivated by Nagy inequality (Nagy,1941) given as

(
s

2
H

(
s

β
,

p − 1

p

))− β
s

6
‖ux‖

β
s
p ‖u‖

q+β q(p−1)
ps

q

‖u‖q+β
q+β

, u ∈ H1(R), (3.1)

whereq, β > 0, p > 1, s = 1+q(p−1)/p, H(a, b) = [(a+b)−(a+b)Γ (1+a+b)]/[a−ab−bΓ (1+a)
Γ (1 + b)] andΓ is the Gamma function and by Gagliardo–Nirenberg inequality

‖u‖r 6 C‖∇u‖ϑ2 ‖u‖1−ϑ
2 , 0< ϑ 6 1, u ∈ H1(Rn),

whereϑ = n(1/2 − 1/r ); the non-linear functionalJ(u, v) on H1(R)× H1(R)

J(u, v) =
(‖u‖2

2 + ‖v‖2
2)

1−θ/2(‖ux‖2
2 + ‖vx‖2

2)
θ/2

‖u2 + v2‖1/2
2

, θ =
1

4
, (3.2)

is defined. The functionalJ(u, v) is well defined onH1(R) × H1(R) dueto embedding ofH1(R) in
L4(R). It should be pointed out that the non-linear functionalJ(u, v) is a generalization of the sin-
gle variable functionalJ(u) that was considered in the study of standing waves of the NLS equation
(Weinstein, 1983).

The first variation of the non-linear functionalJ(u, v) is given as

δJ = −B
∫

R

{[uxx −Ωu + γ (u2 + v2)u]η1 + [vxx −Ωv + γ (u2 + v2)v]η2}dx,

whereηi ∈ C∞
0 (R)(i = 1,2),Ω = ω−c2/4 andγ = β2/c, B =

[
33/

(
44Ω3γ 4

( ∫

R
(u2+v2)2 dx

)6)]1/8,
andthe Pohozaev type identities,

3
∫

R

(u2
x + v2

x)dx = Ω

∫

R

(u2 + v2)dx =
3γ

4

∫

R

(u2 + v2)2dx, (3.3)

satisfiedby (u, v) are used. It can be shown that the infimum ofJ(u, v) is achieved at a pair of positive
functions(R1, R2) whenc > 0 and 4ω − c2 > 0 using Lieb’s compactness lemma (Lieb,1983). Thus,
the critical points of the functionalJ(u, v) in H1(R) × H1(R) arethe non-trivial weak solutions of
(1.4). Details of the proof will be given elsewhere.

It should be noted that there are various studies in the literature devoted to the problem of existence
of solutions of the coupled system (1.4) and its generalizations (Maiaet al.,2006;Figueiredo & Lopes,
2008, and the references therein). In those studies, variational approaches based on minimization of en-
ergy functionals subject to some constraints are used. Though the approach presented above is different
from those ofMaia et al. (2006) andFigueiredo & Lopes(2008), it is readily seen that minimizing
the energy functional is equivalent to minimizing the non-linear functionalJ(u, v). Indeed, the energy
functional for solitary waves

I4(u, v) =
∫

R

(

u2
x + v2

x +
c2

4
(u2 + v2)− γ (u2 + v2)2

)

dx,
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586 H. BORLUK AND S. ERBAY

afterthe scale transformation(uq(x), vq(x)) =
√

q(u(qx), v(qx)) with q > 0, takes the form

I4(u, v)> inf
q>0

I4(uq, vq) = inf
q>0

∫

R

[q2(u2
x + v2

x)+
c2

4
(u2 + v2)− γq(u2 + v2)2]dx

>
∫

R

(q2(u2
x + v2

x)− γq(u2 + v2)2)dx, (3.4)

wherethe conserved mass integrals do not change,‖uq‖2 = ‖u‖2 and‖vq‖2 = ‖v‖2. Using the scaled
forms of the identities (3.3) in (3.4), the energy functional takes the form

I4(u, v) > inf
q>0

I4(uq, vq) > −

(
3γ2Ω7

16

)1/8

λ5/4 1

inf J(u, v)
,

for which J(uq, vq) = J(u, v) andλ = I1 + I2. Thus, ground state solutions(uq, vq), i.e. a minimizer
of the HamiltonianI4, is also a minimizer of the functionalJ(u, v).

4. Stability of solitary waves

In this section, we are concerned with the stability of solitary wave solutions (1.3) of system (1.2). For
solitary waves, the appropriate notion of stability is orbital stability. All solitary waves of the same form
but in different positions through space translation and phase rotation are assumed to be in the same
orbit. The LSI equations have translation and phase symmetries, i.e. if(φ(x, t), ψ(x, t), w(x, t)) solves
the LSI equations, then(ei θ1φ(x + x0, t), ei θ2ψ(x + x0, t), w(x + x0, t)) solves the same system for any
x0 ∈ R andθ1, θ2 ∈ [0,2π). We define the orbit O( f, g, h) of the triplet( f, g, h) as follows:

O( f, g, h) = {ei θ1 f (.+ x0), e
i θ2g(.+ x0), h(.+ x0); θ1, θ2 ∈ [0,2π), x0 ∈ R}.

A solitary wave is said to be ‘orbitally stable’ if, for the initial data being near the solitary wave orbit,
the solution at all later times remains near the solitary wave orbit.

The main result of this section is the following theorem.

THEOREM 2 For c > 0 and 4ω − c2 > 0, solitary wave solution of (1.2)

eiωtΦ(x − ct)= eiωt R1(x − ct)ei c(x−ct)
2 ,

eiωtΨ (x − ct)= eiωt R2(x − ct)ei c(x−ct)
2 ,

W(x − ct) = −β
c [R2

1(x − ct)+ R2
2(x − ct)],





(4.1)

is orbitally stable, i.e. for anyε > 0, there exists a correspondingδ > 0 such that the initial data
(φ0, ψ0, w0) ∈ H1(R)× H1(R)× L2(R) with

‖φ0(.)−Φ(.)‖H1 6 δ, ‖ψ0(.)− Ψ (.)‖H1 6 δ, ‖w0(.)− W(.)‖2 6 δ,

imply

inf
x0∈R

θ1∈[0,2π)

‖ei θ1φ(.+ x0, t)−Φ(.)‖H1 6 ε,
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STABILITY OF SOLITARY WAVES FOR THREE-COUPLED LSI EQUATIONS 587

inf
x0∈R

θ2∈[0,2π)

‖ei θ2ψ(.+ x0, t)− Ψ (.)‖H1 6 ε,

inf
x0∈R

‖w(.+ x0, t)− W(.)‖2 6 ε.

In order to show that solitary waves (4.1) are orbitally stable, i.e. to prove Theorem 2; we have
to find an estimate on the distance inH1(R) × H1(R) betweenthe orbit O(R1,R2) of solitary waves
and the solution(φ(x, t), ψ(x, t)) of the LSI system. The deviation of the solution(φ(x, t), ψ(x, t))
corresponding to the initial data(φ0, ψ0) from the orbit O(R1,R2) of solitary waves is measured by the
metric

ρ2
Ω [(φ , ψ),O(R1,R2)] = inf

x0∈R
θ1,θ2∈[0,2π)

{IΩ } ,

where

IΩ(x0, θ1, θ2)= NΩ(e
i θ1e−i c

2 (.+x0−ct)φ(.+ x0, t)− R1)

+NΩ(e
i θ2e−i c

2 (.+x0−ct)ψ(.+ x0, t)− R2). (4.2)

The norm functionNΩ in (4.2) is defined asNΩ( f ) = Ω‖ f ‖2
2 + ‖∇ f ‖2

2 and satisfies min(1,Ω)
‖ f ‖2

H1 6 NΩ( f ) 6 max(1,Ω)‖ f ‖2
H1. Perturbations of solitary waves, denoted byw1(x, t), w2(x, t)

andη(x, t), are defined in the form

w1(x, t)= ei θ1e−i c
2 (x+x0−ct)φ(x + x0, t)− R1(x), (4.3)

w2(x, t)= ei θ2e−i c
2 (x+x0−ct)ψ(x + x0, t)− R2(x), (4.4)

η(x, t)= ω(x + x0, t)+
β

c
[R2

1(x)+ R2
2(x)], (4.5)

wherewk(x, t) = pk(x, t) + i qk(x, t)(k = 1,2) arecomplex-valued functions andη(x, t) is a real-
valued function. Here,θ1, θ2 andx0 will be chosen later where the infimum ofIΩ is attained. Equations
(4.2) and (4.3–4.5) show that we have to find estimates on theH1-normsof w1(x, t) andw2(x, t) and
theL2-normof η(x, t).

The following lemma is a generalization of the one that was proved in the context of the or-
bital stability of solitary waves by Bona (1975) for the Korteweg-de Vries equation and byAngulo &
Montenegro(2001) for the LSI equations with an integral term. The following lemma states that there
areθi = θi (t)(i = 1,2) andx0 = x0(t) suchthat infimum ofIΩ(x0, θ1, θ2) exists where the local well
posedness of the Cauchy problem for (1.2) is used.

LEMMA 3 Let (φ, ψ, u) be a solution of (1.2) corresponding to the initial data(φ0, ψ0, u0) ∈ H1(R)×
H1(R)×L2(R)with the properties‖φ0‖2 = ‖R1‖2 and‖ψ0‖2 = ‖R2‖2. Suppose thatIΩ(x0, θ1, θ2) <
Ω(‖R1‖2

2+‖R2‖2
2) for somet0 ∈ [0, T ] and some(x0, θ1, θ2) ∈ R×[0,2π)×[0,2π). Then inf{IΩ |x0 ∈

R, θ1, θ2 ∈ [0,2π)} is assumed at least once.

Proof. It is clear thatIΩ is a continuous function of(x0, θ1, θ2) onR × [0,2π) × [0,2π). Moreover,
for any(θ1, θ2) ∈ [0,2π)× [0,2π), we have

lim
x0→∓∞

IΩ(x0, θ1, θ2)= ‖[e−i c
2 (∙−ct)φ(∙, t)]′‖2

2 + +‖[e−i c
2 (∙−ct)ψ(∙, t)]′‖2

2
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588 H. BORLUK AND S. ERBAY

+‖R′
1(∙)‖

2
2 + ‖R′

2(∙)‖
2
2 + 2Ω‖R1(∙)‖

2
2 + 2Ω‖R2(∙)‖

2
2,

=

(
7Ω

3
+

c2

4

)

(‖R1‖
2
2 + ‖R2‖

2
2), (4.6)

where(3.3) is used. The hypothesisIΩ(x0, θ1, θ2) < Ω(‖R1‖2
2 +‖R2‖2

2), the continuity ofIΩ and(4.6)
imply the result. �

We now show that the infimum ofIΩ is attained at a finite value ofx0 for somet0 ∈ [0, T ]. For this
aim, it will suffice to show thatIΩ(x0, θ1, θ2) < Ω(‖R1‖2

2 + ‖R2‖2
2) holdsin some interval. Using the

inequality‖a + b‖2
2 6 2‖a‖2

2 + 2‖b‖2
2, one can obtain

IΩ(ct,−ωt,−ωt)6 2‖φ′(∙)− φs
′(∙)‖2

2 +

(
c2

2
+Ω

)

‖φ(∙)− φs(∙)‖
2
2

+2‖ψ ′(∙)− ψs
′(∙)‖2

2 +

(
c2

2
+Ω

)

‖ψ(∙)− ψs(∙)‖
2
2,

whereprime denotes differentiation with respect to spatial variablex. Solitary wave solutions(φs, ψs)
given in (1.3) are globally defined. Thus, it follows from the continuous dependence theory that for a
T > 0, there exists aδ > 0 such that if

‖φ0(.)− ei c
2 ∙R1(.)‖H1 < δ and ‖ψ0(.)− ei c

2 ∙R2(.)‖H1 < δ,

then the solution(φ(x, t), ψ(x, t)) corresponding to the initial data(φ0(x), ψ0(x)) exists at least for
06 t 6 T . This solution also satisfies

‖φ(∙, t)− φs(∙, t)‖H1 < ε and ‖ψ(∙, t)− ψs(∙, t)‖H1 < ε.

Using this result, we getIΩ(ct,−ωt,−ωt) 6 4ε2(1 + ω). Choosingε2 < Ω(‖R1‖2
2 + ‖R2‖2

2)/[4(1 +
ω)], shows that the hypothesis of Lemma 3 is satisfied at least for(x̃0, θ̃1, θ̃2) = (ct,−ωt,−ωt), from
which we get an upper bound forIΩ .

As a result of Lemma 3, the following compatibility conditions are obtained for the real-valued
increment functionspi (x, t) andqi (x, t)(i = 1,2)

∫

R

(R2
1 + R2

2)R1q1 dx = 0, (4.7)

∫

R

(R2
1 + R2

2)R2q2 dx = 0, (4.8)

∫

R

(R2
1 + R2

2)

(
R1
∂p1

∂x
+ R2

∂p2

∂x

)
dx = 0. (4.9)

Therelations (4.7–4.9) are obtained by differentiatingIΩ definedin (4.2) with respect toθ1, θ2 andx0,
usingsystem (1.4) and then evaluating the resulting equations at values(x0, θ1, θ2) whichminimize IΩ .
Notethat

IΩ = ‖ei θ1 A′ − R′
1‖

2
2 + ‖ei θ1 B′ − R′

2‖
2
2 +Ω‖ei θ1 A − R1‖

2
2 +Ω‖ei θ1 B − R2‖

2
2,

 at IS
IK

 U
niversity on A

ugust 1, 2011
im

am
at.oxfordjournals.org

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


STABILITY OF SOLITARY WAVES FOR THREE-COUPLED LSI EQUATIONS 589

whereei θ1e−i c
2 (x+x0−ct)φ(x+x0, t) = ei θ1 A(x+x0, t) = R1(x)+w1(x, t) andei θ2e−i c

2 (x+x0−ct)ψ(x+
x0, t) = ei θ2 B(x + x0, t) = R2(x)+ w2(x, t).

We now introduce a continuous non-linear functionalL, called the Lyapunov functional, over
H1(R)× H1(R)× L2(R) in the form

L (φ, ψ, ω) = ω(I1 + I2)+
c

2
I3 + I4, (4.10)

whereIk(k = 1,2,3,4), given in (2.2), are the conserved quantities of system (1.2). Thus, the Lyapunov
functional is invariant with time,ΔL(0)= ΔL(t). Our stability result will rely on the inequalities

ΔL(0)6 2g(ε),

ΔL(t)> g(‖w1‖H1)+ g(‖w2‖H1),

whereg(x) = a1x2 − a2x3 − a3x4 for some positive constantsai (i = 1,2,3) and‖wi ‖H1(i = 1,2) is
thedistance between the solitary wave(Φ,Ψ ) and the solution(φ, ψ) of (1.2). To find the bounds, we
calculateΔL(t)

ΔL(t)= L(φ(x, t), ψ(x, t), ω(x, t))− L(Φ(x), Ψ (x),W(x)),

= L(Φ(x)+ ei cx
2 w1(x, t), Ψ (x)+ ei cx

2 w2(x, t),W(x)+ η(x, t))− L(Φ(x), Ψ (x),W(x)).

Expanding the functionalL near(Φ,Ψ ) yields

ΔL(t) = δL + δ2L + δ3L , (4.11)

whereδL , δ2L andδ3L arethe first, second and third variations ofL, respectively; and all variations
higher than third order are zero. The explicit forms of variations are given as

δL =
∫

R

2{[R1,xx −ΩR1 + γ (R2
1 + R2

2)R1] p1 + [R2,xx −ΩR2 + γ (R2
1 + R2

2)R2] p2}dx, (4.12)

δ2L =
∫

R

[c

2
η2 + p2

1,x + q2
1,x + p2

2,x + q2
2,x +Ω(p2

1 + q2
1 + p2

2 + q2
2)

+2β(R1p1 + R2 p2)η − γ (R2
1 + R2

2)(p
2
1 + q2

1 + p2
2 + q2

2)
]

dx, (4.13)

δ3L =
∫

R

β(p2
1 + q2

1 + p2
2 + q2

2)η dx, (4.14)

wherethe relationsΦ(x) = R1(x)e
i cx
2 , Ψ (x) = R2(x)e

i cx
2 ,W(x) = −β2(R2

1(x) + R2
2(x))/c and

wk(x) = pk(x) + i qk(x)(k = 1,2) areused. Because(R1, R2) is a solution (1.4), the first variation
(4.12) vanishes. Thus,(R1, R2) is also a critical point of the Lyapunov functionalL. From (4.13) and
(4.14), we have

ΔL(t)= 〈L0q1,q1〉 + 〈L0q2,q2〉 + 〈L1 p1, p1〉 + 〈L2 p2, p2〉 + 2〈L3p1, p2〉

−γ
∫

R

[
1

2
(p2

1 + q2
1 + p2

2 + q2
2)

2 + 2(p2
1 + q2

1 + p2
2 + q2

2)(p1R1 + p2R2)

]
dx

+
c

2

∫

R

[
η +

2β

c
(p1R1 + p2R2)+

β

c
(p2

1 + q2
1 + p2

2 + q2
2)

]2

dx, (4.15)

 at IS
IK

 U
niversity on A

ugust 1, 2011
im

am
at.oxfordjournals.org

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


590 H. BORLUK AND S. ERBAY

wherethe operatorsLi (i = 0,1,2,3) aredefined as

L0 = −
∂2

∂x2
+Ω − γ (R2

1 + R2
2), L1 = −

∂2

∂x2
+Ω − γ (3R2

1 + R2
2),

L2 = −
∂2

∂x2
+Ω − γ (R2

1 + 3R2
2), L3 = −2γR1R2.

We use the following lemmas to find a lower bound forΔL(t).

LEMMA 4 There exist positive constantsCi (i = 1,2) suchthat

〈L0qi ,qi 〉 > Ci ‖qi ‖
2
H1 (i = 1,2). (4.16)

Proof. It should be noted thatL0Ri = 0 and Ri > 0(i = 1,2). Therefore,L0 is a non-negative
operator, i.e.μi = inf(〈L0qi ,qi 〉/〈qi ,qi 〉) > 0(i = 1,2). If the infimum of the functionalμi subjectto
the constraints (4.7) and (4.8) is zero then it is attained atqi (x) = Ri (x). This contradicts to the above
constraints, thusμi > 0(i = 1,2), i.e.

〈L0qi ,qi 〉 =
1

ki + 1
‖qi ‖ − γ

∫

R

(R2
1 + R2

2)q
2
1 dx +

ki

ki + 1
‖qi ‖ > C̄i ‖qi ‖

2
2 (i = 1,2),

where‖qi ‖ = ‖∇qi ‖2
2 + Ω‖qi ‖2

2, ki andC̄i aresome positive constants. Ifki < C̄i /(2γE2), where
E = max(‖R1‖∞, ‖R2‖∞), then we have‖qi ‖/(ki + 1)− γ

∫

R
(R2

1 + R2
2)q

2
1 dx > 0, and consequently

〈L0qi ,qi 〉 > Ci ‖qi ‖
2
H1 (i = 1,2),

whereCi = ki min(1,Ω)/(ki + 1). �
To find a lower bound for the expression〈L1p1, p1〉 + 〈L2 p2, p2〉 + 2〈L3p1, p2〉 in (4.15) is more
difficult than that of〈L0qi ,qi 〉. We will use the facts that(R1, R2) is the minimizer of the functional
J(u, v) and that the expression〈L1 p1, p1〉 + 〈L2p2, p2〉 + 2〈L3 p1, p2〉 is associated with the second
variation of J(u, v). First, we prove the following lemma which is a generalization of the one given in
Weinstein(1985).

LEMMA 5 inf
〈 f,R1〉=0
〈g,R2〉=0

(〈L1 f, f 〉 + 〈L2g, g〉 + 2〈L3 f, g〉) = 0.

Proof. Recall that(R1, R2) is a minimizer of the non-linear functionalJ(u, v). Thus,δ2J > 0 near
(R1, R2). The second variation of the functionalJ is of the form

d2

dε2
J(R1 + εη1, R2 + εη2) |ε=0 = a2 (〈L1η1, η1〉 + 〈L2η2, η2〉 + 2〈L3η1, η2〉)

+ a2

[
Ω2

3d
(〈R1, η1〉 + 〈R2, η2〉)

2

+
2Ω

d
(〈R1, η1〉 + 〈R2, η2〉)(〈R1,x, η1,x〉 + 〈R2,x, η2,x〉)

]

−
a2

d

(
〈R1,x, η1,x〉 + 〈R2,x, η2,x〉

)2 > 0, (4.17)
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where a2 = [27γ2/(Ω3d6)]1/8/(4
√

2) and d =
∫

R
(u2

x + v2
x)dx. It should be noted that (1.4) and

Pohozaev-type identities given by (3.3) are used in obtaining (4.17).
If the increment functions are chosen asη1 = f andη2 = g with the properties〈 f, R1〉 = 0 and

〈g, R2〉 = 0, then it follows from (4.17) that

〈L1 f, f 〉 + 〈L2g, g〉 + 2〈L3 f, g〉 > 0. (4.18)

Moreover, the functionsR1,x andR2,x satisfy

L1R1,x + L3R2,x = (−R1,xx +ΩR1 − γ (R2
1 + R2

2)R1)x = 0,

L2R2,x + L3R1,x = (−R2,xx +ΩR2 − γ (R2
1 + R2

2)R2)x = 0.

}

(4.19)

As a result of (4.19), we find

〈L1R1,x, R1,x〉 + 〈L2R2,x, R2,x〉 + 〈L3R1,x, R2,x〉 + 〈L3R2,x, R1,x〉

= 〈L1R1,x + L3R2,x, R1,x〉 + 〈L2R2,x + L3R1,x, R2,x〉 = 0,

which shows that the infimum of (4.18) is assumed at(R1,x, R2,x). Becausef = R1,x andg = R2,x
satisfythe hypothesis of the lemma, we get〈 f, R1〉 = 〈R1,x, R1〉 = 0 and〈g, R2〉 = 〈R2,x, R2〉 = 0.
This completes the proof. �

In order to find a lower bound for〈L1p1, p1〉 + 〈L2p2, p2〉 + 2〈L3p1, p2〉, we require that the
perturbed solution has the sameL2-normas the solitary wave, as given in the hypotheses of Lemma 3,

‖φ‖2 = ‖R1‖2, ‖ψ‖2 = ‖R2‖2. (4.20)

Conditions(4.20) give rise to the following constraints

〈Ri , pi 〉 = −
1

2
[〈 pi , pi 〉 + 〈qi ,qi 〉] = −

1

2
‖wi ‖

2
2 < 0 (i = 1,2), (4.21)

wheredefinitions (4.3) are used. The restrictions (4.20) will be relaxed later and the stability of solitary
waves will be proved with respect to general perturbations. To this end, we assume that the real parts of
the increment functions,pi (x, t) (i = 1,2), will be of the formpi = pi || + pi ⊥, where

pi || =
〈pi , Ri 〉

‖Ri ‖2
2

Ri , pi ⊥ = pi −
〈pi , Ri 〉

‖Ri ‖2
2

Ri .

Thisgives rise to〈pi ⊥, Ri 〉 = 0 (i = 1,2). Using the decomposition ofpi (x, t) (i = 1,2), we have

〈L1p1, p1〉 + 〈L2p2, p2〉 + 2〈L3p1, p2〉

= 〈L1 p1⊥, p1⊥〉 + 〈L2 p2⊥, p2⊥〉 + 2〈L3p1⊥, p2⊥〉 + 〈L1p1||, p1||〉 + 〈L2p2||, p2||〉

+2〈L3p1||, p2||〉 + 2〈L1p1⊥, p1||〉 + 2〈L2p2⊥, p2||〉 + 2〈L3p2||, p1⊥〉 + 2〈L3p1||, p2⊥〉.(4.22)

To find a suitable lower bound for〈L1 p1⊥, p1⊥〉+〈L2 p2⊥, p2⊥〉+2〈L3 p1⊥, p2⊥〉 usingLemma 5, we
further assume that〈p1, R1〉/‖R1‖2

2 = 〈p2, R2〉/‖R2‖2
2. This condition appears as a result of non-linear

coupling betweenφ andψ .
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LEMMA 6 There exist positive constantsC3 andC4 suchthat

〈L1p1⊥, p1⊥〉 + 〈L2p2⊥, p2⊥〉 + 2〈L3 p1⊥, p2⊥〉

> C3(‖p1‖
2
2 + ‖p2‖

2
2)− C4(‖w1‖

4
H1 − ‖w2‖

4
H1). (4.23)

Proof. If f = p1⊥ andg = p2⊥ thenthe hypotheses of Lemma 5 are satisfied byp1⊥ andp2⊥. That is,

〈L1p1⊥, p1⊥〉 + 〈L2p2⊥, p2⊥〉 + 2〈L3p1⊥, p2⊥〉 > 0. (4.24)

If the infimum of (4.24) subject to the constraint (4.9) is zero then it is attained at(p1⊥, p2⊥) =
(R1,x, R2,x). In such a case, for the increment functionspi = αRi + Ri,x (i = 1,2), whereα =
〈pi , Ri 〉/‖Ri ‖2

2 (i = 1,2), the constraint (4.9) reduces to

α

4

∫

R

[(R2
1 + R2

2)
2]x dx +

∫

R

(R2
1 + R2

2)(R1R1xx + R2R2xx)dx = 0,

∫

R

{[(R2
1 + R2

2)x]2 + 2(R2
1 + R2

2)[(R1,x)
2 + (R2,x)

2]}dx = 0,

whereintegration by parts is used. This result leads toRi = 0 (i = 1,2) thatcontradicts positivity of
ground state solutions(R1, R2). Thus, there exists a positive constantC̄3 suchthat

〈L1p1⊥, p1⊥〉 + 〈L2p2⊥, p2⊥〉 + 2〈L3p1⊥, p2⊥〉 > C̄3. (4.25)

Moreover, using〈pi ⊥, pi ⊥〉 = 〈pi , pi 〉 − [〈 pi , pi 〉 + 〈qi ,qi 〉]
2/(4‖Ri ‖

2
2), the inequality (4.25) can be

arranged to yield (4.23)

〈L1 p1⊥, p1⊥〉 + 〈L2p2⊥, p2⊥〉 + 2〈L3 p1⊥, p2⊥〉>C3(〈p1⊥, p1⊥〉 + 〈p2⊥, p2⊥〉),

= C3

(

‖p1‖
2
2 + ‖p2‖

2
2 −

‖w1‖4
2

4‖R1‖2
2

−
‖w2‖4

2

4‖R2‖2
2

)

,

>C3(‖p1‖
2
2 + ‖p2‖

2
2)− C4(‖w1‖

4
H1 + ‖w2‖

4
H1),

wherecontinuous embedding ofH1(R) in L4(R) is used andC3 andC4 aresome positive constants.
This completes the proof of Lemma 6. �

LEMMA 7 There exist positive constantsC5 andC6 suchthat

〈L1 p1||, p1||〉 + 〈L2p2||, p2||〉 + 2〈L3 p1||, p2||〉 > −C5‖w1‖
4
H1 − C6‖w2‖

4
H1. (4.26)

Proof. Recall that〈Li Ri , Ri 〉 = −2γ〈R2
i , R2

i 〉 (i = 1,2). Firstly, usingpi || = αRi (i = 1,2), where
α = −‖wi ‖2

2/(2‖Ri ‖2
2), we obtain

〈Li pi ||, pi ||〉 = α2〈Li Ri , Ri 〉 = −
γ

2

‖R2
i ‖2

2

‖Ri ‖4
2

‖wi ‖
4
2 > −C̄4+i ‖wi ‖

4
H1 (i = 1,2), (4.27)
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whereC̄5 andC̄6 arepositive constants. Secondly, using Sobolev embedding and Young’s inequality
ab6 ap/p + bq/q with p = q = 2, we obtain

〈L3p1||, p2||〉 = −
γ

4

‖R1R2‖2
2

‖R1‖2
2‖R2‖2

2

‖w1‖
2
2‖w2‖

2
2 > −

C̄7

2
(‖w1‖

4
H1 + ‖w2‖

4
H1), (4.28)

whereC̄7 is a positive constant. (4.26) follows from (4.27) and (4.28). �

LEMMA 8 〈L3p1||, p2⊥〉 = 0 and〈L3p2||, p1⊥〉 = 0.

Proof. Using the definition of the operatorL3, we have〈L3p1||, p2⊥〉 = −2γα〈R2
1 p2⊥, R2〉. Then

|〈L3 p1||, p2⊥〉| 6 2γαE2|〈p2⊥, R2〉| = 0 (4.29)

and, similarly

|〈L3p2||, p1⊥〉| 6 2γαE2|〈p1⊥, R1〉| = 0. (4.30)

This completes the proof. �

LEMMA 9 There exist positive constantsEi andFi (i = 1,2) suchthat

2〈Li pi ⊥, pi ||〉 > −Ei ‖wi ‖
3
H1 − Fi ‖wi ‖

4
H1 (i = 1,2). (4.31)

Proof. For the terms〈Li pi ⊥, pi ||〉, we find

〈Li pi ⊥, pi ||〉 = α(〈Ri,x, pi ⊥,x〉 − 3γ〈R3
i , pi ⊥〉 − γ 〈R2

j Ri , pi ⊥〉), (i, j = 1,2 i 6= j ), (4.32)

whereα = −‖wi ‖2
2/(2‖Ri ‖2

2), |〈R3
i , pi ⊥〉|6E2|〈Ri , pi ⊥〉| = 0 and|〈R2

j Ri , pi ⊥〉|6E2|〈Ri , pi ⊥〉|=0.
Using pi ⊥ = pi − αRi andthe Cauchy–Schwarz inequality in (4.32), we have

〈Li pi ⊥, pi ||〉>−
‖wi ‖2

2‖Ri ‖2
2

〈Ri,x, pi,x〉 −
‖Ri,x‖2

2

4‖Ri ‖4
2

‖wi ‖
4
2,

>−
‖Ri,x‖2

2‖Ri ‖2
2

‖wi ‖
2
2‖wi,x‖2 −

‖Ri,x‖2
2

4‖Ri ‖4
2

‖wi ‖
4
2 (i = 1,2).

By continuous embedding ofH1(R) in L2(R), the result follows

〈Li pi ⊥, pi ||〉 > −
Ei

2
‖wi ‖

3
H1 −

Fi

2
‖wi ‖

4
H1 (i = 1,2),

whereEi andFi aresome positive constants. �

LEMMA 10 There exist positive constantsAi (i = 1,2,3) suchthat

〈L1p1, p1〉 + 〈L2 p2, p2〉 + 2〈L3 p1, p2〉> A1(‖p1‖
2
H1 + ‖p2‖

2
H1)− A2(‖w1‖

3
H1 + ‖w2‖

3
H1)

−A3(‖w1‖
4
H1 + ‖w2‖

4
H1). (4.33)
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Proof. By direct computation, one can see that

〈L1 p1, p1〉 + 〈L2 p2, p2〉 + 2〈L3 p1, p2〉 = −γ
∫

R

[(R2
1 + R2

2)(p
2
1 + p2

2)+ 2(R1P1 + R2p2)
2]dx

+‖p1‖ + ‖p2‖, (4.34)

where‖pi ‖ = Ω‖pi ‖2
2 + ‖∇ pi ‖2

2 (i = 1,2). On the other hand, combining the inequalities (4.23),
(4.26), (4.29), (4.30) and (4.31), we obtain

〈L1 p1, p1〉 + 〈L2 p2, p2〉 + 2〈L3p1, p2〉>C3(‖p1‖
2
2 + ‖p2‖

2
2)− E1‖w1‖

3
H1 − E2‖w2‖

3
H1

−C8‖w1‖
4
H1 − C9‖w2‖

4
H1, (4.35)

whereC8 = C4 + C5 + F1 andC9 = C4 + C6 + F2 arepositive constants.
Using (4.34) and (4.35), for a sufficiently small positive numberm, we find

I =
1

m + 1
(‖p1‖ + ‖p2‖)− γ

∫

R

[(R2
1 + R2

2)(p
2
1 + p2

2)+ 2(R1P1 + R2 p2)
2]dx

> C̄1(‖p1‖
2
2 + ‖p2‖

2
2)− A2(‖w1‖

3
H1 + ‖w2‖

3
H1)− A3(‖w1‖

4
H1 + ‖w2‖

4
H1)

>−A2(‖w1‖
3
H1 + ‖w2‖

3
H1)− A3(‖w1‖

4
H1 + ‖w2‖

4
H1), (4.36)

where−γ
∫

R
[(R2

1 + R2
2)(p

2
1 + p2

2) + 2(R1P1 + R2p2)
2]dx > −6γE2(‖p1‖2

2 + ‖p2‖2
2) is used, and

C̄1 = (C3−6γmE2)/(m+1), A2 = max(E1, E2)/(m+1)andA3 = max(C8,C9)/(m+1)arepositive
constants. Recalling that〈L1 p1, p1〉 + 〈L2p2, p2〉 + 2〈L3p1, p2〉 = I + m(‖p1‖ + ‖p2‖)/(m+ 1), we
obtain (4.33), whereA1 = mmin(1,Ω)/(1 + m). This completes the proof of the lemma. �
Finally, the integral term in (4.15) can be estimated as

∣
∣
∣
∣
∣
∣
−γ

∫

R

[
1

2
(p2

1 + q2
1 + p2

2 + q2
2)

2 + 2(p2
1 + q2

1 + p2
2 + q2

2)(p1R1 + p2R2)

]
dx

∣
∣
∣
∣
∣
∣

6 D̄1‖w1‖H1(‖w1‖
2
H1 + ‖w2‖

2
H1)+ D̄2‖w2‖H1(‖w1‖

2
H1 + ‖w2‖

2
H1)+ γ ‖w1‖

4
4 + γ ‖w2‖

4
4,

6 D1‖w1‖
3
H1 + D2‖w2‖

3
H1 + D3‖w1‖

4
H1 + D4‖w2‖

4
H1, (4.37)

wherecontinuous embedding ofH1(R) in L4(R) andin L∞(R) andYoung’s inequalityab6 ap/p +
bq/q withp = 3 andq = 3/2, are used, andDi (i = 1,2,3,4) arepositive constants.

Proof of Theorem 2. Combining the inequalities (4.16), (4.33) and (4.37), an upper bound forΔL is
given in terms ofH1-normsof the increment functionswi asfollows

ΔL(t) > g(‖w1‖H1)+ g(‖w2‖H1), (4.38)

whereg(x) = a1x2 − a2x3 − a3x4 with positive constants

a1 = min(C1,C2, A1), a2 = A2 + max(D1, D2), a3 = A3 + max(D3, D4).

Becauseg(0)= 0 andg(x) ≈ a1x2 nearx = 0, there exists a positive numberε, 0< ε < ε0, such that
g(x) increases on [0, ε0]. For such anε, the inequalities

‖w1(0)‖H1 = ‖φ0(.)−Φ(.)‖H1 6 δ, ‖w2(0)‖H1 = ‖ψ0(.)− Ψ (.)‖H1 6 δ,
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imply that

ΔL(0) < g(ε)+ g(ε)

for sufficiently smallδ. As L(t) is invariant with time, i.e.ΔL(t) = ΔL(0); from (4.38), we have

g(‖w1(t)‖H1)+ g(‖w2(t)‖H1) 6 ΔL(t) = ΔL(0) < g(ε)+ g(ε).

By continuity of the functiong, there is at least a numberε 6 ε1 6 ε0 suchthat

‖w1(t)‖H1 6 ε1 6 c1ε and ‖w2(t)‖H1 6 ε1 6 c2ε,

wheret ∈ [0,∞) andci (i = 1,2) arepositive constants.
Finally for the incrementη(x, t), we have to prove that‖η(t)‖2 6 cε usingthe results obtained for

‖w1(t)‖H1 and‖w2(t)‖H1. In (4.38), we have shown that

ΔL(t)= K +
c

2

∫

R

[
η +

2β

c
(p1R1 + p2R2)+

β

c
(p2

1 + q2
1 + p2

2 + q2
2)

]2

dx

> g(‖w1(t)‖H1)+ g(‖w2(t)‖H1)

+
c

2

∫

R

[
η +

2β

c
(p1R1 + p2R2)+

β

c
(p2

1 + q2
1 + p2

2 + q2
2)

]2

dx,

where

K = 〈L0q1,q1〉 + 〈L0q2,q2〉 + 〈L1p1, p1〉 + 〈L2p2, p2〉 + 2〈L3 p1, p2〉

−γ
∫

R

[
1

2
(p2

1 + q2
1 + p2

2 + q2
2)

2 + 2(p2
1 + q2

1 + p2
2 + q2

2)(p1R1 + p2R2)

]
dx.

For a givenε > 0 with 0< ε < ε0, the functiong is increasing andg(‖wi (t)‖H1) > 0 for ‖wi (t)‖H1 <
ci ε(i = 1,2). This shows thatK > 0. By the invariance property of the functionalL,ΔL(t) = ΔL(0),
we have

∫

R

[
η +

2β

c
(p1R1 + p2R2)+

β

c
(p2

1 + q2
1 + p2

2 + q2
2)

]2

dx 6
4

c
g(ε).

Using the inequalities(a + b)2 >
a2

2
− b2 and(a + b)2 6 2(a2 + b2), we find

‖η(t)‖2
2 6

8

c
g(ε)+ c3(‖w1(t)‖

2
H1 + ‖w2(t)‖

2
H1)+ c4(‖w1(t)‖

4
H1 + ‖w2(t)‖

2
H1), (4.39)

wherethe embedding ofH1(R) into L2(R) andL4(R) is used andc3 andc4 arepositive constants. For
somec > 0, we have‖η(t)‖2 6 cε. Thus, we have proved that solitary waves(φs, ψs, us) (1.3) are
orbitally stable with respect to the small perturbations preserving theL2-norms.

In order to prove stability of solitary waves with respect to general perturbations, we consider a
solitary wave solution(Q1Ω, Q2Ω) whichsatisfy the system (1.4)

Q′′
1Ω −ΩQ1Ω + γ (Q2

1Ω + Q2
2Ω)Q1Ω = 0,

Q′′
2Ω −ΩQ2Ω + γ (Q2

1Ω + Q2
2Ω)Q2Ω = 0,
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where‖φ0‖2 6= ‖Q1Ω‖2 and ‖ψ0‖2 6= ‖Q2Ω‖2. Then, the functionsPi (x) = QiΩ(x/
√
Ω)/

√
Ω

(i = 1,2), satisfy

P′′
1 − P1 + γ (P2

1 + P2
2 )P1 = 0,

P′′
2 − P2 + γ (P2

1 + P2
2 )P2 = 0,

where‖Pi ‖2 = ‖QiΩ‖2/
4
√
Ω(i = 1,2). Thus, for the solution(Q1Ω0, Q2Ω0) correspondingtoΩ0 > 0,

we have‖Pi ‖2 = ‖QiΩ0‖2/
4
√
Ω0. It is possible to chooseΩ0 such that ‖φ0‖2 = ‖Q1Ω0‖2 and

‖ψ0‖2 = ‖Q2Ω0‖2. In the proof of stability of solitary waves(Q1Ω, Q2Ω) relative to general per-
turbations that do not preserveL2-norms, assuming the initial data obey the inequalities‖φ0(.) −

Q1Ω(.)e
i c.
2 ‖H1 6 δ and‖ψ0(.) − Q2Ω(.)e

i c.
2 ‖H1 6 δ , the idea is to apply the preceding stability

theory for(Q1Ω0, Q2Ω0) andthen to use the triangle inequalities

‖ei θ1φ(.+ x0, t)− Q1Ω(.)e
i c.
2 ‖H1 6 ‖ei θ1φ(.+ x0, t)− Q1Ω0(.)e

i c.
2 ‖H1

+‖Q1Ω0(.)− Q1Ω(.)‖H1, (4.40)

‖ei θ2ψ(.+ x0, t)− Q2Ω(.)e
i c.
2 ‖H1 6 ‖ei θ2ψ(.+ x0, t)− Q2Ω0(.)e

i c.
F2 ‖H1

+‖Q2Ω0(.)− Q2Ω(.)‖H1. (4.41)

The first terms in the right-hand side of the inequalities (4.40) and (4.41) are bounded from above
by the orbital stability of the solutions(Q1Ω0, Q2Ω0). It remains to determineδ and to show that
‖QiΩ0 − QiΩ‖H1 (i = 1,2) arealso small. From the definitions ofQiΩ andQiΩ0, we have

‖QiΩ − QiΩ0‖
2
H1 =

√
Ω

∫

R

∣
∣
∣
∣
∣
Pi (x)−

√
Ω0

Ω
Pi

(√
Ω0

Ω
x

)∣∣
∣
∣
∣

2

dx

+
√
Ω3

∫

R

∣
∣
∣
∣
∣
P′

i (x)−
Ω0

Ω
P′

i

(√
Ω0

Ω
x

)∣∣
∣
∣
∣

2

dx (i = 1,2). (4.42)

Usingthe inequality(a − εb)2 6 2ε2(a − b)2 + 2(1 − ε)2a2, (4.42) is rewritten as

‖QiΩ − QiΩ0‖
2
H1 =

√
2Ω



Ω0

Ω

∫

R

∣
∣
∣
∣
∣
Pi (x)− Pi

(√
Ω0

Ω
x

)∣∣
∣
∣
∣

2

dx +
(
Ω0

Ω
− 1

)2 ∫

R

P2
i (x) dx





+2
√
Ω3



Ω
2
0

Ω2

∫

R

∣
∣
∣
∣
∣
P′

i (x)− P′
i

(√
Ω0

Ω
x

)∣∣
∣
∣
∣

2

dx +
(
Ω0

Ω
− 1

)2 ∫

R

(P′
i (x))

2 dx



 .

(4.43)

Following the results ofAngulo et al. (2002), obtained in the study of the stability of solitary waves in
the critical case for a generalized Korteweg-de Vries equation and a generalized NLS equation, an upper
bound for (4.43) can be given as follows

‖QiΩ0 − QiΩ‖2
H1 6Gi (

4
√
Ω0 − 4

√
Ω)2 + Hi (

√
Ω0 −

√
Ω)2 (i = 1,2),
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wherethe fundamental theorem of calculus and Minkowski’s inequality are used, and the positive con-
stantsGi andHi (i = 1,2) aregiven as

Gi = 8

√
Ω0

Ω
(‖xP′

i ‖
2
2 +Ω0‖xP′

i
′‖2

2) Hi =
2

√
Ω
(‖Pi ‖

2
2 + (

√
Ω0 +

√
Ω)2‖P′

i ‖
2
2).

We now show that there exists a positive constantC = C(Ω0, Pi ) suchthat|
√
Ω0 −

√
Ω| 6 Cδ at least

for small values ofδ. Using the results

√
Ω0 =

‖QiΩ0‖
2
2

‖Pi ‖2
2

=
‖φ0‖2

2

‖P1‖2
2

=
‖ψ0‖2

2

‖P2‖2
2

,
√
Ω =

‖QiΩ‖2
2

‖Pi ‖2
2

,

wehave

|
√
Ω0 −

√
Ω|6

1

‖P1‖2
2

∣
∣
∣‖φ0(.)‖

2
2 − ‖Q1Ω(.)e

i c.
2 ‖2

2

∣
∣
∣

6
1

‖P1‖2
2

(
δ‖φ0(.)‖

2
2 +

(
1 +

1

δ

)
‖φ0(.)− Q1Ω(.)e

i c.
2 ‖2

2

)
,

wherethe inequality
∣
∣‖a‖2 − ‖b‖2

∣
∣ 6 ‖a − b‖2 + 2‖a‖‖a − b‖ andYoung’s inequality are used. Using

‖φ0(.)− Q1Ω(.)e
i c.
2 ‖2

2 6 δ
2 and‖φ0‖2

2 =
√
Ω0‖P1‖2

2, we have

|
√
Ω0 −

√
Ω| 6

1

‖P1‖2
2

(δ
√
Ω0‖P1‖

2
2 + δ2 + δ) 6 C(Ω0, P1)δ,

whereC(Ω0, Pi ) =
√
Ω0 + 2/‖P1‖2

2. The inequality|
√
Ω0 −

√
Ω| 6 Cδ implies| 4

√
Ω0 − 4

√
Ω| 6 Dδ

for some positive constantD. This completes the proof of Theorem 2.
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