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In this paper, we consider a three-component system of 1D long wave—short wave interaction equations.
The system has two-parameter family of solitary wave solutions. We prove orbital stability of the solitary
wave solutions using variational methods.
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1. Introduction

Wave propagation problems in various continuous media, such as fluids, solids and optical fibers, lead
to single or coupled partial differential equations. While the Korteweg-de Vries-type equations describe
propagation of long waves, the non-linear Sifinger (NLS)-type equations describe propagation of
envelope of short waves in continuous media, where a different length scale is defined in each case. If the
phase speed of a long wave coincides with the group speed of a short wave, then the resonant interaction
between long and short waves occur. This interaction is modelled by a two-component coupled evolution
equations called the long wave—short wave interaction (LSI) equations,

it + dxx = pwe,
wty = v(|¢|2)X3

whereg: R x RT — C, w: R x RT — R, g andv arereal constants. Herey represents a long-
wave mode ang denotes short-wave mode propagating in a continuous medium. System (1.1) was
derived to describe the resonant interaction of waves propagating on the surface ofDj@jeyic
& Redekopp 1977). The same system was also obtained for the resonant interaction of internal gravity
waves Grimshaw 1977). Motivated by the physical significance, various aspects.f,(such as soli-
tary wave solutions, stability of solitary wave solutions, well posedness of the Cauchy problem, have
been widely considereda, 1978; Tsutsumi & Hatanp1994;Laurencof 1995;Ginibre & Tsutsumi
1997).

On the other hand, if there exist two short waves with the same group speed and a long wave whose
phase speed is equal to the group speed of short waves, then long wave—short wave resonant interaction
arises among the wave modes. This phenomena is modelled by the three coupled LSI equations

it + dxx = fwé,
Lyt + wxx = Bwy, 1.2)
wy = BB + [y [*)x

whereg, w: R x Rt — C,w: R x R™ — R andp is a real constant. Here; represents a long-wave
mode andp andy denote short-wave modes. Systelt?] is a generalization of the two component LSI

(1.1)
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systemand appears, for instance, in water wav@ésafk, 1985) and in a bulk elastic medium (Erbay,
2000). Motivated by physical applications, various aspectsldf)(are investigated analytically and
numerically Ma, 1981;Edenet al.,2005;Borluk et al.,2007). The main purpose of the present study
is to show that solitary wave solutions df.2) are stable in some sense.

The LSI system1.2) has a two-parameter family of solitary wave solutions of the form

ps(x,1) = B(x — ct)e®!,
ws(X, 1) = ¥(x — ct)e®, (1.3)
ws(X, ) = W(x — ct),

whereW(x) = — (1@ (X)[2+ ¥ ()[2)/c, (@ (x), ¥ (X)) = (Ri(X), Ra(x))e%, ¢ > 0and 40—c2 > 0.
Here,W € L2(R) and(Ry, Ry) € HY(R) x H1(R) arepositive solutions of

2 2
C
—Uxx+(w__)u_ £ (U? +v?u =0,

c

! (1.4)
C2 IBZ(UZ 2) =0 .
vxx + | @ 2 v c +0%)o =0.

The mathematically exact theory for stability of solitary waves dates baclBémjamin,1972) for

the Korteweg-de Vries-type equations. In that work, a Lyapunov functional was constructed using the
conserved quantities of the Korteweg-de Vries equation, and it was shown that the stability of solitary
waves relied on suitable lower and upper bounds on the variation of the Lyapunov functional. In a later
study (Veinstein 1986), the same method has been used to show the stability of standing waves of the
NLS equation, which has been already prove€arenave & Liong1982) using the concentration—
compactness methods. Llaurencot(1995), using the so-called Lyapunov method, stability of solitary
wave solutions of (1.1}p(x,t) = R(x — ct)d®H 3= 1,(x t) = W(x — ct), where(R, W) e

H1(R) x L2(R), was established whem > 0 and 40 — ¢ > 0. In the present paper, our aim is to
extend the above method to the three component LSI system, and show that the solitary was of (
are orbitally stable.

The organization of the paper is as follows: The local well posedness of the Cauchy problem for
(1.2) is discussed, and conserved integrals for the same system is given in Section 2. A variational
characterization of the solitary waves, which will be used in the proof of the stability of solitary wave
solutions, is briefly presented in Section 3. We state the stability theorem that relies on a lower bound
of the second variation of the Lyapunov functional in Section 4. Using the analysis of the unconstrained
variational problem presented briefly in Section 3, the lower bound is proved and the stability of solitary
waves is established in the same section.

Notations.Throughout the papdrP(R),1 < p < oo, represents the space pfintegrable func-
tions. || f | p denoteghe LP(R) normof f,1 < p < co. HY(R) = WH2(R) is the Sobolev space df
for which the norm| f |2, = || |5 + ||V f |3 is finite. (f, g) refers to the inner product df andg in
L2(R).

2. Local well posedness of Cauchy problem

The Cauchy problem for the two component LSI systéri)was studied if'sutsumi & Hatan@1994)
for initial data (¢, wo) € HY2(R) x L2(R). A contraction technique together with smoothing effect
estimates Kenig et al., 1991,1993) was used to prove existence and uniqueness of solutions of the

TT0Z ‘T 1snBny uo Ausianiun MIS| ¥e B10°s[eulnolpiojxo yerew) wolj papeojumoq


http://imamat.oxfordjournals.org/

584 H. BORLUK AND S. ERBAY

initial value problem in suitable Banach spaces. Introducing a regularized system, the existence and

and uniqueness results fdr.{) was also established limurengot(1995) for the initial datd¢o, wo) €
HL(R) x L2(R) thatwas essential to the study of orbital stability of solitary waves. Later, the local-
well-posedness result fot (1) was improved ifGinibre & Tsutsumi(1997) for initial data(¢o, wo) €
HXR) x LYK(R),0 <k < 1/2.

The Cauchy problem for the three component LSI systér)(

it + dxx = Fp(d, w),
i Yt + Wxx = Fl//(¢’ l//)’ (21)

¢(X9 0) = ¢0(X)3 l//(X, 0) = WO(X)

was considered iEdenet al. (2005) for the initial datdgo, wo, wo) € HY2(R) x HY2(R) x L2(R),
where

t
(Fp. Fy) = (ﬁz / (Ip (X, 912 + Iy (X, 9)¥)x dS+ﬁwo(X)> (P (X, 1), w (X, 1)).
0

In that study, followingTsutsumi & Hatang1994), a fixed point method was used to establish the
existence and uniqueness of local in time solutions &f)(in a suitable Banach space:

THEOREM1 Let (¢, wo) € HY2(R) x HY/2(R) andwg € L2(R)NL>°(R). There exists a unique solu-
tion (4 (X, 1), w (X, t)) of the Cauchy problen®(1) on [Q T]for T > 0 such thai € C([0,T]; H/2(R)),
¢x € L= (R; L?[0, T]), y € C ([0, T]; HY2(R)) andyy € L*® (R; L2[0, T]).

Theconserved integrals of the LSI system (1.2) are of the fa@orlQk et al.,2007)

|1=/|¢|2dx, lz=/|w|2dx,
R R

Is = /[w2+i(¢*¢x Bt uy — wy] dx,
R

Iy = / [el? + Ly 2 + BUSE + 1y Dwldx, (2.2)
R

wherel; andl; arethe mass functionalsg is the momentum functional and is the energy functional,
i.e. the Hamiltonian. It should be pointed out that the conservation of rhaasd|,, and momentum,
I3, make sense sind@ (x, t), y(x, t), w(x, 1)) € H2(R) x H2(R) x L2(R), whereas the the con-
servation of energy does not. Because the energy functibnalays a major role in the orbital stability
computations, and the natural space for enerdyigR) x H1(R) x L2(R), we will assume in the rest
of the present study that if the initial dat@o, wo, wo) arechosen fromHL(R) x H1(R) x L2(R), then
the corresponding solutio@ (x, t), v (X, t), w(X, t)) remains in the same space.

3. Variational characterization of solitary waves

In this section, we briefly discuss a variational characterization of solution& ), (vhich plays a key
role in the stability analysis of solitary waves (1.3).
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Motivated by Nagy inequalityNagy,1941) given as

—1
q+ﬂq(’;5 )

b
s, (s pP—1\\"s _ lluxliplul
(EH(E’pT)) <o ueH'®), (3.1)
luligts

[Z1h=N

whereq, 8 > 0, p> 1,5 = 1+4(p—1)/p, H(@,b) = [(a+b)" P I'(1+a+b))/[ab "I (1+a)
I'(1+ b)]and I" is the Gamma function and by Gagliardo—Nirenberg inequality

lulr < CIVulgliulz™, 0<9 <1, ueHY(R"),
whered = n(1/2 — 1/r); the non-linear functional (u, v) on H(R) x H1(R)

_ (i3 + W IHT2Auxl3 + loxI1D™2 )1 32)
142 + 025 T4

J(u,v)

is defined. The functional (u, ») is well defined onH1(R) x HL(R) dueto embedding oH1(R) in
L4(R). It should be pointed out that the non-linear functiodal, ) is a generalization of the sin-
gle variable functionall (u) that was considered in the study of standing waves of the NLS equation
(Weinstein 1983).

The first variation of the non-linear functiond(u, ») is given as

0J = —B/{[uXX — QU+ y (U + 02Ul + [oxx — Qo + 7 (U2 + 02)]y2)dX,
R

wheren e CR(R)(i = 1,2), @ = o—c?/4andy = f2/c, B = [33/(44Q3)4( [(u2+v2)2dx)®)]"",
andthe Pohozaev type identities, R

3/(u§ +0d)dx = Q /(u2 +03)dx = ?’TV/(U2 +v2)2%dx, (3.3)
R R R

satisfiedby (u, v) are used. It can be shown that the infimunmJgfi, ») is achieved at a pair of positive
functions(Ry, R2) whenc > 0 and 4» — ¢? > 0 using Lieb’s compactness lemma (Li€l983). Thus,
the critical points of the functional (u, v) in HYX(R) x H1(R) arethe non-trivial weak solutions of
(1.4). Details of the proof will be given elsewhere.
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It should be noted that there are various studies in the literature devoted to the problem of existence

of solutions of the coupled systerh.4) and its generalizationMgia et al.,2006;Figueiredo & Lopes,

2008, and the references therein). In those studies, variational approaches based on minimization of en-
ergy functionals subject to some constraints are used. Though the approach presented above is different

from those ofMaia et al. (2006) andFigueiredo & Lopeq2008), it is readily seen that minimizing
the energy functional is equivalent to minimizing the non-linear functidrial »). Indeed, the energy
functional for solitary waves
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afterthe scale transformatiofuq (x), vq(X)) = ,/q(u(gx), v(qx)) with g > 0, takes the form
2
l4(u, 0) > inf 14(uq, vg) = inf /[qz(uﬁ +02) + E (W2 +0?) — QU2 + v?)dx
g>0 q>0 4
R
> @ +0f) = yaw? + 0?2, (3.4)
R

wherethe conserved mass integrals do not chafiggl|> = |lull2 and|logll2 = |lv]|2. Using the scaled
forms of the identities3.3) in (3.4), the energy functional takes the form

1/8
32’ 541
16 inf (U, 0)’

|4(u51)) 2 inf |4(Uq,0q) 2 _(
gq>0

for which J(ug, vq) = J(u,v) andi = I + 1. Thus, ground state solutioligg, vq), i.e. a minimizer
of the Hamiltonianly, is also a minimizer of the functional(u, v).

4. Stability of solitary waves

In this section, we are concerned with the stability of solitary wave solutions (1.3) of syst2mKor

solitary waves, the appropriate notion of stability is orbital stability. All solitary waves of the same form
but in different positions through space translation and phase rotation are assumed to be in the same
orbit. The LSI equations have translation and phase symmetries,(iggXxift), w (X, t), w(X, t)) solves

the LSI equations, the(ei"lqﬁ (X+Xo, 1), gtz w (X4 Xo, 1), w(X+ X, 1)) solves the same system for any

Xo € R and#y, 6; € [0, 27). We define the orbit Of, g, h) of the triplet(f, g, h) as follows:

O(f, g, h) = {€f (. + x0), €%2g(. 4 x0), h(. + X0); 61,62 € [0, 27), X0 € R}.

A solitary wave is said to be ‘orbitally stable’ if, for the initial data being near the solitary wave orbit,
the solution at all later times remains near the solitary wave orbit.
The main result of this section is the following theorem.

THEOREM2 Forc > 0 and 40 — ¢® > 0, solitary wave solution of{.2)

gt (x — ct) = d°tRy (x — ct)d 7,
oty (x — ct) = d“t Ry(x — ct)d 77, (4.1)
W(x —ct) =-2[R(x —ct) + R3(x —ct)],

is orbitally stable, i.e. for any > 0, there exists a correspondidg> O such that the initial data
(¢o, wo, wo) € HY(R) x HL(R) x L?(R) with

l¢o() = POlpr <6, llwo() = ¥Ollpr <6, [lwo() = W()ll2 <9,
imply

inf  l€% (. +x0,1) — D)1 < e,
X()ER
61€[0,27)
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inf €%y (. +x0,) = PO llur <e,
XoeR

6-€[0,27)

inf lw(. + Xg,t) —W()|l2 < e.

XoER

In order to show that solitary waved.{) are orbitally stable, i.e. to prove Theorem 2; we have
to find an estimate on the distance itt(R) x H1(R) betweenthe orbit Qg, r,) Of solitary waves
and the solution(¢ (x, t), v (X, t)) of the LSI system. The deviation of the solutigh(x, t), v (X, t))
corresponding to the initial dai@o, wo) from the orbit Qr, r,) Of solitary waves is measured by the
metric

P3[4, v), ORurRy] = inf  {lo},
XoER
01,02€[0,2)

where

Lo (X0, 01, 02) = N (€167 5(+0=D g (4 xo, 1) — Ry)
+Ng (6026712008 1, (4 %0 t) — Ry). (4.2)

The norm functionNg in (4.2) is defined adNo (f) = Q| f||I3 + ||V f |5 and satisfies miKl, Q)
1112, < No(f) < max@, Q)| f|12,. Perturbations of solitary waves, denotediby(x, t), wa(x, t)
andzn(x, t), are defined in the form

w1(X, 1) = dfem 30X b (x 4 w0 t) — Ry(X), (4.3)
wa(X, 1) = dP2e71 200y (x 4 xo t) — Ry(X), (4.4)
n(X, t) = o(X + Xo, t) + é[Rf(x) + R3(0)], (4.5)

wherewg(X,t) = pk(X,t) +igk(x,t)(k = 1,2) arecomplex-valued functions ang(x, t) is a real-
valued function. Heref, 6> andxg will be chosen later where the infimumlef is attained. Equations
(4.2) and §.3-4.5) show that we have to find estimates onHidtenormsof w1 (x, t) andwx(x, t) and
the L2-normof 5(x, t).

The following lemma is a generalization of the one that was proved in the context of the or-
bital stability of solitary waves by Bona (1975) for the Korteweg-de Vries equation ahgulo &
Montenegro(2001) for the LSI equations with an integral term. The following lemma states that there
aredi = 6;(t)(i = 1,2) andxg = Xp(t) suchthat infimum ofl o (xo, 61, 62) exists where the local well
posedness of the Cauchy problem fbr2) is used.

LEMMA 3 Let (¢, v, u) be a solution of1.2) corresponding to the initial dateo, yo, Ug) € Hl(R) X
H1(R) x L2(R) with the propertiegigoll> = || Rul2 and||woll2 = [|Rz]l2. Suppose thalto (Xo, 61, 62) <
Q| R1||§+|| R2||§) for sometg € [0, T] and soméxg, 81, 02) € Rx [0, 27) x[0, 27). Theninflgo|xg €
R, 01,62 € [0, 27)} is assumed at least once.

Proof. It is clear thatl o is a continuous function ofxo, 61, 62) onR x [0, 2x) x [0, 2z). Moreover,
for any (61, 62) € [0, 2x) x [0, 27), we have

lim 1o (X0, 01,02) = 6™ 2" Dg (-, O 13+ +lI[e™ 2Dy (-, H]'13
Xo— Fo0
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/ 2 / 2 2 2
+HIRIOIS + 1RG5 + 221 RL()HII5 + 22 R2 ()15,

70 ¢
=(? + Z) (||R1||%+ ||R2||%), (4.6)

where(3.3) is used. The hypothedig (xo, 1, 62) < 2(||Rull3+ | R[13), the continuity ofl , and(4.6)
imply the result. O

We now show that the infimum df; is attained at a finite value of for sometg € [0, T]. For this
aim, it will suffice to show that g (xg, 81, 62) < Q(|| R1||§ + |l R2||§) holdsin some interval. Using the
inequalityfla + bl|3 < 2[[all3 + 2|Ib]|3, one can obtain

2

lo(ct, —ot, —ot) < 2[¢'() — ¢s' ()5 + (% + Q) lp () = ¢s()13

2

20y’ () =y OlI3+ (% + 9) I ()= wsOI3,

whereprime denotes differentiation with respect to spatial variabl8olitary wave solutionggs, ws)
given in (1.3) are globally defined. Thus, it follows from the continuous dependence theory that for a
T > 0, there exists & > 0 such that if

lo(.) — € 2 Ri()llyr <6 and fyo() — €2 Re()llye < 6,

then the solution¢ (X, t), w(x, t)) corresponding to the initial dat@o(X), wo(X)) exists at least for
0 <t < T. This solution also satisfies

PG, 1) —ds, Dl <e and [y (,t) — ws(-, Dy <e.

Using this result, we gelto (ct, —wt, —ot) < 4e2(1 + w). Choosinge? < Q([|Ryl13 + [R21I3)/[4(1 +
)], shows that the hypothesis of Lemma 3 is satisfied at leag&fofy, 0>) = (ct, —owt, —wt), from
which we get an upper bound fop .

As a result of Lemma 3, the following compatibility conditions are obtained for the real-valued
increment functiong; (x, t) andg; (x, t)(i = 1,2)

/ (R? + RHRyqu dx = 0, 4.7)
R
/ (R? + R3)Rygz dx = 0, (4.8)
R
op1 op2
R? + Ry [ Ri— + Rp—= =0. 4.
[+ (R4 RT2 ) ax =0 @.9)
R

Therelations 4.7—4.9) are obtained by differentiatihg definedin (4.2) with respect téh, 6> andxo,
usingsystem {.4) and then evaluating the resulting equations at vakig 1, 62) which minimizel .
Notethat

lo = l€%A — RI3+ 1€9B" — Ry|I5+ Q€% A~ Ry|I5 + Q€% B — Ry13,
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wheregf1e™1 2% b (x 4 % t) = &P A(X+X0, t) = Ry(X)+w1(X, t) andef2e=1 2X+x0—ct) (x4
X0, 1) = %2B(x + Xo, t) = Ra(X) 4+ w2(X, t).

We now introduce a continuous non-linear functiohal called the Lyapunov functional, over
HLR) x HL(R) x L2(R) in the form

L, y,0) =w(l1+ |2)+§|3+ l4, (4.10)

wherelg(k = 1,2, 3,4), given in (2.2), are the conserved quantities of syste®)( Thus, the Lyapunov
functional is invariant with timedL (0) = AL(t). Our stability result will rely on the inequalities
4L(0) < 29(e),
AL() 2 g(lwilly2) + 9wzl o),

whereg(x) = a;x? — apx3 — agx* for some positive constangs(i = 1,2,3) and||wj||y1(i = 1,2) is
thedistance between the solitary wag®, ¥) and the solutior{¢, y) of (1.2). To find the bounds, we
calculateAL (t)

ALO = LG, D, p (%, D, 0, 1) = L@(), ¥(x), W),
= L(®(X) + € Zwi(x, 1), Z(X) + € Z wa(X, 1), W(X) + 7(X, 1)) — L(®(X), ¥ (X), W(X)).

Expanding the functiondl near(®, ¥) yields
AL(t) = 6L + 6°L + 5L, (4.11)

wheredL, 6L andd3L arethe first, second and third variations bf respectively; and all variations
higher than third order are zero. The explicit forms of variations are given as

oL = / 2{[Rixx — QR + 7 (R2+ R3)R1]p1 + [Roxx — 2Ra + 7 (RZ + R3O Ry po)dx, (4.12)

R
C
oL =/ (577 + PR+ G+ P+ By + PR+ i + P34+ D)
R
+2p(Rupr+ Rep2)y = 7 (R + RO(PE + 6 + P +6) | ox, (4.13)
L= [ 03+ 0 + P + . (4.14)
R
wherethe relations® (x) = Rl(x)ei%, 7(X) = Rg(x)ei%,W(x) = —,BZ(R%(X) + R%(x))/c and

wik(X) = pk(X) +igk(X)(k = 1,2) areused. BecauséR;, Ry) is a solution {.4), the first variation
(4.12) vanishes. ThugR, Rp) is also a critical point of the Lyapunov functionil From (4.13) and
(4.14), we have

1
—y / [E(p%+qf+ P2+ @22 + 2(p2 + 2 + P2+ 62)(PLRy + szz)} 0

c

2 2
+§/[n+?ﬂ(p1R1+ szz)+§(p§+qf+ p%+q§)} dx, (4.15)

R

TT0Z ‘T 1snBny uo ANsIaniun MIS| ¥e B10°s[euInolpiojxo yewrew| wolj papeojumoq


http://imamat.oxfordjournals.org/

590 H. BORLUK AND S. ERBAY

wherethe operators (i = 0,1, 2, 3) aredefined as

02 ) 2 02 2 2
o2 2 2
Lzz—mﬁ-g _V(R1+3R2)’ L3= —2]) R1R2

We use the following lemmas to find a lower bound ol (t).

LEMMA 4 There exist positive constan® (i = 1, 2) suchthat
(Logi.qi) > CillgilI%: (i =1,2). (4.16)

Proof. It should be noted thatgR, = O and R, > 0( = 1,2). Therefore,Lg is a hon-negative
operator, i.euj = inf({(LoGi, Gi)/{di, di)) = 0( = 1, 2). If the infimum of the functional:; subjectto
the constraints (4.7) and.@) is zero then it is attained gt(x) = R; (x). This contradicts to the above
constraints, thug; > 0( =1, 2), i.e.

1 Ki - .
(Lodi, 0} =~ lail =7 /(R%+ REaf dx + ( — Gl > Cillal3 (=12,
R
where||gi || = ||V ||§ + Q]| ||§, ki andC; aresome positive constants. kf < C;/(2y E2), where

E = max(| Ryl | R2lloo), then we haveigi ||/(ki + 1) — y [(R? + R2)g?dx > 0, and consequently
R

(Logi.Gi) > Cillgi %, (i =1,2),

whereC; = ki min(1, Q)/(ki + 1). O
To find a lower bound for the expressighipsi, p1) + (L2p2, p2) + 2(L3p1, p2) in (4.15) is more
difficult than that of(Loq;, gi). We will use the facts thatR;, Ry) is the minimizer of the functional
J(u, v) and that the expressiai1p1, p1) + (L2p2, p2) + 2(L3p1, p2) is associated with the second

variation of J(u, v). First, we prove the following lemma which is a generalization of the one given in

Weinstein(1985).
Lemma 5 inf  ({L1f, f) +(L2g. o) +2(Laf. 9) = 0.
(6R2)=0

Proof. Recall that(Ry, Ry) is a minimizer of the non-linear functional(u, v). Thus,62J > 0 near
(R1, R2). The second variation of the functionalis of the form

d2
@J(Rl +en, Ro+en2) le=o=2a% ((Lan1, 71) + (Lanz, n2) + 2{Lan1, 72))

+a° Q—Z«R ) + (R 2
3q (R m 2, 12))

2Q
+ T(<Rlz 7]1) + <R29 ’72))((R1,X9 7/1,X> + <R2,X9 ’72,X)):|

a2
~d ((Rl,x, m.x) + (Rox, ’72,x))2 >0, (4.17)
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where a? = [2772/(23d%)]Y8/(4v2) andd = [(uZ + »2)dx. It should be noted thatl(4) and

R
Pohozaev-type identities given by.8) are used in obtaining (17).
If the increment functions are chosensas= f and#; = g with the properties f, R1) = 0 and
(g, Rz) = 0, then it follows from (4.17) that

(Lif, f) +(L2g,9) + 2(L3f,g) > 0. (4.18)

Moreover, the functiondR; x and Ry x satisfy

L1iRix 4+ L3Rox = (=Rixx + QR1 — 7 (RE + RO)Ry)x = o,] 4.19)

L2Rox + L3Rix = (—Roxx + QR — 7 (RZ + RO Ry)x = 0.
As a result of 4.19), we find

(L1R1x, Rix) + {(L2Rex, Rex) + (L3R x, Rox) + (L3Rox, Rix)

= (LlRl,x + I—3R2,x, Rl,x) + <L2R2,x + I—3Rl,x, RZ,X) = 0,
which shows that the infimum o#(18) is assumed &Ry x, R> x). Becausef = Ry x andg = Rox
satisfythe hypothesis of the lemma, we gdt R;) = (Ryx, R1) = 0 and(g, R2) = (Rox, R2) = 0.
This completes the proof. O

In order to find a lower bound fofL1p1, p1) + (L2p2, p2) + 2(L3p1, p2), we require that the
perturbed solution has the saménormas the solitary wave, as given in the hypotheses of Lemma 3,

gl =lIRwll2, lwll2 = lIRzll2. (4.20)

Conditions(4.20) give rise to the following constraints

1 1 .
(R, pi) = —§[<|Oi, pi)+ (G, q)] = —Ellwi 13<0 (i =1,2), (4.21)

wheredefinitions (4.3) are used. The restrictiods20Q) will be relaxed later and the stability of solitary
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waves will be proved with respect to general perturbations. To this end, we assume that the real parts of

the increment functiongy; (x, t) (i = 1, 2), will be of the formp; = pij + piL, where

(pi, Ri) (pi, Ri)
R, . — D —
IR 2 PL=P TR

Thisgivesrise to/pj1, Ri) =0 (i =1, 2). Using the decomposition qfi (x, t) (i = 1,2), we have

pij = R.

(L1p1, p1) + (L2p2, pP2) + 2({L3p1, P2)
= (L1p1r, P11) + (L2pzyr, P21) + 2(L3p1y, P21) + (L1pay, P1y) + (L2pzy, P2;)
+2(Lapyy, P21) + 2{L1p11, P1) + 2(L2p21, P21) + 2(L3Pz|, P11) + 2(L3P1y, P21).(4.22)

To find a suitable lower bound fat.1 p11, p11) +(L2p21, p21) +2(L3p11, p21) usingLemma 5, we
further assume thdpi, Ry)/|l R1||§ = (p2, R)/Il R2||§. This condition appears as a result of non-linear
coupling betweer andy .
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LEMMA 6 There exist positive constan®y andC,4 suchthat

(Lip11, P11) + (Lapay, p2i) + 2(L3p1s, P21)
> Ca(llpuli3 + 11 p2ll3) — Calllwall}y — lw2llf)- (4.23)

Proof. If f = p1; andg = p2, thenthe hypotheses of Lemma 5 are satisfiedopy and p2, . That is,

(L1p1t, P11) + (L2p2i, poi) + 2(Lap1y, p21) = 0. (4.24)

If the infimum of @.24) subject to the constraind.Q) is zero then it is attained &p1y, p21) =
(R1x, Rox). In such a case, for the increment functions= aR + R x (i = 1,2), wherea =
(pi, R)/IR ||§ (i =1, 2), the constraint4.9) reduces to

o
z / [(R2 + R2)%] dx + / (R? 4 R2)(RyRuxx + ReRoo)dx = 0,
R R

/ (IR + RDW2 + 2(R2 + RO[(Rux)? + (Rox)?]}dx = O,
R

whereintegration by parts is used. This result leadsfo= 0 (i = 1,2) thatcontradicts positivity of
ground state solution@;, Ry). Thus, there exists a positive const@atsuchthat

(Lapas, p1o) + (L2p2i, p2i) +2(Lapis, p21) = Ca. (4.25)

Moreover, using(pi 1, pi1) = (pi, Pi) — [(Pi» Pi) + (G, @)]%/ (4R 13), the inequality (4.25) can be
arranged to yield (4.23)

(Lip11, P1o) 4+ (Lap2r, por) + 2(Lap1s, P21) = Ca((P11, P1L) + (P2L, P21)),

lwild  lw2l3
=Cs| Ipll3 + I p2ll5 — - ,
( ? 2 4IRi3  4IReI}

> Ca(ll pall + 1p2113) — Ca(llwallfy: + w2l ).

wherecontinuous embedding ¢ 1(R) in L4(R) is used andC3 andC4 aresome positive constants.

This completes the proof of Lemma 6. O

LEMMA 7 There exist positive constan®s; andCg suchthat
(L1pyy, pp) + (L2p2p. P2y) + 2(Lapyy, Pz;) = —Csllwall},: — Cellwall}s. (4.26)

Proof. Recall that(Li R, Ri) = —2y(R2, R?) (i = 1,2). Firstly, usingpi; = R (i = 1,2), where
a = —|lwi[13/(2|[R||3), we obtain

7 IR?IS
2R 113

(Li pip, pip) = 0%(LiR, R) = lwil > —Cagillwillf, @ =1,2), (4.27)
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whereCs and Cg are positive constants. Secondly, using Sobolev embedding and Young’s inequality
ab < aP/p+ b%/g with p =g = 2, we obtain

7 IIRiRe|I o0 o Croo g 4
(Lapyy, p2) = = ——=—=sllwillslw2ll5 = —— (lwall;1 + w2l 1), (4.28)
P T T RZIR T T T 2 e H
whereCy is a positive constant4(26) follows from @.27) and 4.28). O

LEMMA 8 (L3pyj, p21) = 0 and(Lzpgj, p11) = 0.
Proof. Using the definition of the operatdrs, we have(Lzpy, p21) = —2ya(Rf P21, R2). Then

[{(Lapyj, P21}l < 2yaE?|(p2L, Re)| =0 (4.29)
and, similarly

{L3P2}, P11)l < 27aE?|(p1L, Ry)l = 0. (4.30)
This completes the proof. O

LEMMA 9 There exist positive constanis andF; (i = 1, 2) suchthat
2(LipiL, pip) = —Eillwill}: — Fillwill}, (1 =1,2). (4.31)
Proof. For the termgL; pi 1, pij), we find
(LipiL, pip) = a((Rix, Piix) —3y(R, pi) — 7 (RER, pia)), (L i=120#]), (432

wherea = —[|lwi |5/(2IR [13), I(R?, pi 1) <E?[(R, pi1)| = 0and|(RPR;, pi 1) <E?|(R, pi1)|=0.
Using pi. = pi — a R andthe Cauchy—-Schwarz inequality i4.82), we have

l[wi |2 IRxIZ 4
(LipiL, pip) > — (Rixs Pix) — —==2lw; |13,
T R T T T Rt
IRxllz, 2 IRxIZ 4
> X2 B iz — 2 [lwi[[§ (i =1,2).
IRIZT AT 4Ryt

By continuous embedding ¢i1(R) in L2(R), the result follows

Ei Fi ,
(Lipiss pi) > =S il = S ol (=1,2),

whereE; andF; aresome positive constants. O

LEMMA 10 There exist positive constangg (i = 1, 2, 3) suchthat

(L1p1, p1) + (L2p2, p2) + 2(Lap1, p2) = Aa(ll el + IP2llZ0) — Ae(lwall®, + llw2ll3)

—As(lwallfys + llwzl})- (4.33)
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Proof. By direct computation, one can see that

(L1p1, p1) + (L2p2, P2) + 2(L3p1, p2) = —7 / [(RZ + R)(p? + p3) + 2(RyP1 + Rap2)?ldx
R

+IIpell + P21l (4.34)

where|| pill = Q| pi ||§ + 1V ||§ (i = 1,2). On the other hand, combining the inequalitids2@),
(4.26), @.29), @.30) and 4.31), we obtain

{L1p1, p1) + (L2p2, p2) + 2(L3p1, p2) > Ca(ll p1li3 + 1 p2l13) — Exllwilly — Ezllwall,
—Cgllw1ll},: — Collwall}a, (4.35)
whereCg = C4 + Cs + F1 andCy = C4 + Cg + F» arepositive constants.
Using @.34) and 4.35), for a sufficiently small positive number, we find

1
= g Pl + P2l =y /KRE + RO(P + P3) + 2(RiPL+ Rop2)?dx
R

> Ca(llpall3 + 11p213) — Aallwall}s + llw2ll}:) — As(lwallfs + llwall}1)
> —Ao(lwal}s + llw2ll}:) — As(llwallfs + lwallo), (4.36)
where—y [[(RZ + RE)(pZ + p3) + 2(RiP1 + Rep)?ldx > —6y E%(||psll5 + [ p2l13) is used, and
R

C1 = (C3—6ymE?)/(m+1), A> = max(Es, E»)/(m+1) andAz = max(Cs, Cg)/(m+1) arepositive
constants. Recalling thak 1 p1, p1) + (L2p2, P2) +2(L3pa, p2) = | +m(Ipall + [ p2ll)/(M+ 1), we
obtain (4.33), wherd\; = mmin(1, Q)/(1 4+ m). This completes the proof of the lemma. O
Finally, the integral term in4.15) can be estimated as

1
_y/[z(p%+‘ﬁ+ P2+ 02)% + 2(p2 + 92 + P2 + g3) (p1Ry + szz)} dx

< Daflwrllpr(lwalZs + lw2ll) + Dzllwallya(lwallds + lwall?) + 7wl + 7 llwalls,
< Daflwill}s + D2llwzl3: + Dallwallfs + Dallwall},. (4.37)

wherecontinuous embedding ¢i1(R) in L*(R) andin L°°(R) andYoung’s inequalityab < aP/p +
bd/q withp = 3andq = 3/2, are used, anB; (i = 1, 2, 3, 4) arepositive constants.

Proof of Theorem 2. Combining the inequalities (4.16}%.83) and 4.37), an upper bound farL is
given in terms ofH 1-normsof the increment functions; asfollows

AL®) = g(Jlwallya) + g(llwzliya), (4.38)
whereg(x) = a;x? — apx® — agx* with positive constants
a; = min(Cq, Co, A1), ax = Ax+ max([Di, D2), a3z = Az+ max(Ds, Dy).

Becausey(0) = 0 andg(x) ~ a;x2 nearx = 0, there exists a positive number0 < € < €, such that
g(x) increases on [0,¢4. For such arg, the inequalities

w1 @)l = llgo() = Pl <96, w2(0)llyz = llwo() = ¥ ()llyz <6,
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imply that
AL(0) < g(e) +9(e)
for sufficiently smalld. As L (t) is invariant with time, i.eAL(t) = 4L (0); from (4.38), we have
9(lwi® 1) + 9(llw2®)lIy1) < AL(1E) = 4L(0) < g(€) + g(e).
By continuity of the functiorg, there is at least a number< €1 < ¢g suchthat
lwi® g < €1 < cie and lwa(t)lly1 < €1 < Cze,

wheret € [0, co) andc; (i = 1, 2) arepositive constants.
Finally for the incremeng(x, t), we have to prove thaly(t)||2 < ce usingthe results obtained for
w1 )|y and|lwz(t) || y1. In (4.38), we have shown that

2 2
AL(@t) =K +§/ [774- ?ﬂ(lew p2Ro) + é(p%+qf+ p§+q§)} dx
R
2 g(lw1(®)llq2) + g(lw2)1 1)

c 2
+§/ |:’7+ ?ﬂ(lel‘l' P2R2) +
R

B

2
E(pi +0Z+p5+ q%)} dx,

where
K = (Lod1, d1) + (LoG2, d2) + (L1p1, p1) + (L2pP2, p2) + 2(L3p1, p2)
1
- | [E(F’f +0 + P2+ 00)2 + 2(p? + 0F + pZ + o)) (1R + szz)] ox.
For a givene > Owith 0 < € < €, the functiong is increasing and(||w; (t) || y1) > O for [Jwi (V)| 42 <

Cie(i =1,2). This shows thaK > 0. By the invariance property of the functioral] AL (t) = 4L (0),
we have

2 Beras2iad] dx<
/[17—!— ?(lel‘f— P2R2) + E(pl+q1 + P2 +q2)] dx < Eg(E)'

2
Using the inequalitiega + b)? > a? —b? and(a + b)2 < 2(@2 + b?), we find

8
[HIGIERS c9@+ ca(lwi® %1 + w2112 + Ca(lwa® I, + lw2)1F0), (4.39)

wherethe embedding oH(R) into L2(R) andL*(R) is used and;s andc arepositive constants. For
somec > 0, we have||5(t)|2 < ce. Thus, we have proved that solitary waves, s, Us) (1.3) are
orbitally stable with respect to the small perturbations preserving theorms.

In order to prove stability of solitary waves with respect to general perturbations, we consider a
solitary wave solutiorfQ10, Q20) which satisfy the system (1.4)

Qo —92Qio+7(Q%5+ Q5,)Q10 =0,
Qo — 2Q20 +7(Q35 + Q35)Q20 =0,
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where|lgoll2 # [[Qiell2 and[[yoll2 # [Q2ell2. Then, the functiond, (x) = Qio(X/vQ)/vVQ
(i =1,2), satisfy

P/ — PL+y (P2 + P?)P =0,
Py — P2+ 7 (Pf+ PH)P, =0,

where||P |2 = [|Qiall2/~/Q(i = 1,2). Thus, for the solutioliQ1 o,, Q20,) correspondingo Qo > 0,

we have [Pz = [Qiq,ll2/~¥/Qo. It is possible to choos&q suchthat [|ollz = [|Q1g,ll2 and
lwollz = 11Q2g,ll2. In the proof of stability of solitary wavesQ1q, Q20) relatve to general per-

turbations that do not preser\le?-norms,assuming the initial data obey the inequalitieo(.) —

ng(.)e% lq: < 0 and|lyo(.) — ng(.)e%”Hl < 0, the idea is to apply the preceding stability
theory for(Q1g,, Q2q,) andthen to use the triangle inequalities

169 (. + X0, 1) — Q1o ()eT 42 < €%p(. + X0, 1) — Qrap (Ve [l

| +1Qua() = QoOlks, (4.40)
€%y (. + X0, 1) — Qa0 ()€ Ily2 < €%y (. + X0, t) — Qa0 ()EF2 || 142
+1Q200() — Q20() 1. (4.41)

The first terms in the right-hand side of the inequalitids4Q) and 4.41) are bounded from above
by the orbital stability of the solutionéQ10,, Q20,). It remains to determing and to show that
Qio, — Qielly: (i = 1,2) arealso small. From the definitions i o andQj o,, we have

2

P.(X)—,/%H(,/%X)
Q Q 2
oo (%)

Usingthe inequality(a — €b)? < 26?(a — b)? 4 2(1 — €)?a?, (4.42) is rewritten as

2 2
P(x)— PR (,/%x) dx + (% - 1) / P?(%) dX)
R
2 \[ Q 2
P/ (x) — p( /on) dx + (3" - 1) /(P{(x))zdx) -
R

(4.43)
Following the results oAngulo et al. (2002), obtained in the study of the stability of solitary waves in

||QiQ_QiQO||2H1:\/§/ dx
R

dx (i =1,2). (4.42)

+\/E/

Q
1Qia — Qiaols = v20 (5"/
R

/o3 [ 98
+2 Q3(E/
R

the critical case for a generalized Korteweg-de Vries equation and a generalized NLS equation, an upper

bound for @#.43) can be given as follows

1Qigo — Qiell?: <Gi(V/Qo— V2)? + Hi(/Q - V2)* (=12),
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wherethe fundamental theorem of calculus and Minkowski’s inequality are used, and the positive con-

stantsG; andH; (i = 1, 2) aregiven as

Qo 2
Gi = 8,/3(||xP(||§ + QolIxP/"13) Hi = TE(MP. 13+ (VQo + V)2 P/13).

We now show that there exists a positive cons@nt C(Qo, P) suchthat|./Qg — v/ Q| < Cd atleast
for small values ob. Using the results

. 2 2 2 . 2
\/sz ||QIQ02||2 _ ||¢O||§ _ ||l//0||2’ \/52 ||QIQ||2’
(LA 1P; Pz IIP215 P13

we have

V20— V1< —— [Ido()IE — Qe ()e? I
||F>1||2

2 1 e o
NTAE (5ll¢o(-)llz + (1+ 5) l0(.) — Qua()e? ||2) :

wherethe inequality| lall? — Ibl12| < la—bl|>+2[allla— b|| andYoung's inequality are used. Using
lgo() — Que()e? |3 < 0 and|i¢ollZ = +/ol| P1|3, we have

Ve —¢5|\”P”2<f5\/ oll Pull3 + 6° + 9) < C(Qo, P1)d,

whereC(Qo, P) = +/Q0+ 2/[ P1]l3. The inequalityl/Qo — v/2| < Cd implies| ¥ Qo — v/ 2| <

for some positive constad. This completes the proof of Theorem 2.
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